
Comparison of particle trajectories and collision operators for collisional
transport in nonaxisymmetric plasmas

M. Landreman,1,a) H. M. Smith,2 A. Moll�en,3 and P. Helander2
1Institute for Research in Electronics and Applied Physics, University of Maryland, College Park,
Maryland 20742, USA
2Max-Planck-Institut f€ur Plasmaphysik, 17491 Greifswald, Germany
3Department of Applied Physics, Chalmers University of Technology, G€oteborg, Sweden

(Received 20 December 2013; accepted 18 March 2014; published online 4 April 2014)

In this work, we examine the validity of several common simplifying assumptions used in numerical

neoclassical calculations for nonaxisymmetric plasmas, both by using a new continuum drift-kinetic

code and by considering analytic properties of the kinetic equation. First, neoclassical phenomena are

computed for the LHD and W7-X stellarators using several versions of the drift-kinetic equation,

including the commonly used incompressible-E�B-drift approximation and two other variants,

corresponding to different effective particle trajectories. It is found that for electric fields below

roughly one third of the resonant value, the different formulations give nearly identical results,

demonstrating the incompressible E�B-drift approximation is quite accurate in this regime.

However, near the electric field resonance, the models yield substantially different results. We also

compare results for various collision operators, including the full linearized Fokker-Planck operator.

At low collisionality, the radial transport driven by radial gradients is nearly identical for the

different operators; while in other cases, it is found to be important that collisions conserve

momentum. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870077]

I. INTRODUCTION

One important difference between axisymmetric and

nonaxisymmetric plasmas is that neoclassical effects in the

latter are more sensitive to small values of the radial electric

field Er. In axisymmetric plasmas, in order for the radial

electric to modify the collisional ion heat flux and other neo-

classical phenomena, the poloidal ion Mach number

ðB=BpolÞjvEj=vi must approach �1, since an Er of corre-

sponding magnitude is required to modify the trapped region

of phase space.1 Here, B is the magnetic field magnitude,

Bpol is the poloidal magnetic field, vE is the E�B drift, and

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
is the ion thermal speed. However, in nonaxi-

symmetric plasmas, a much smaller value of Er can modify

the collisional fluxes.2–4 The reason is that helically trapped

particles experience a secular radial magnetic drift, and

whichever process first interrupts this radial motion will

thereby determine the step size for radial diffusion. When

Er¼ 0, the radial magnetic drift is interrupted by collisions,

which cause the particle to gain parallel momentum and

de-trap. But if Er is sufficient for the poloidal E�B preces-

sion frequency to exceed the effective collisional detrapping

rate, E�B precession begins to carry helically trapped par-

ticles onto untrapped trajectories, and also confines the

trapped orbits by convecting them (usually poloidally)

around the torus, thereby limiting the radial step size and

transport. This transition from collisional (1/�-regime) to

Er-limited (
ffiffiffi
�
p

-regime) transport typically occurs at values

of Er for which the poloidal Mach number is still � 1, due

to the low collisionality in typical experiments. (Here, �
denotes a collision frequency.) For this reason, stellarator

transport at low collisionality is sensitive to small values of

Er. A variety of codes have been developed to compute these

neoclassical effects in stellarators.5–13

However, including the physics of E�B precession in a

df drift-kinetic equation (or code to solve such an equation)

is complicated by several issues. First, if a rigorous expan-

sion in q* � 1 is employed, E�B precession is formally

excluded when the usual drift ordering vE � q�vi is used, but

the high-flow ordering vE � vi is not a useful ordering either,

since it leads to contradictions in a general nonaxisymmetric

field.14,15 Here, q*¼q/L where q is the ion gyroradius and L
is a typical macroscopic scale length. Second, if the vE poloi-

dal precession term is included in a radially local,

time-independent kinetic equation for df (the departure of

the distribution function from a Maxwellian), unphysical

constraints are placed on the distribution function, as we will

prove in Sec. III by considering appropriate moments of the

kinetic equation. These constraints only appear when Er 6¼ 0,

meaning a small but nonzero Er is a singular perturbation

of the Er¼ 0 case. These unphysical behaviors have been

eliminated in previous codes4 by making the ad-hoc replace-

ment 1/B2 ! 1/ hB2i (where h…i denotes a flux surface

average) in the E�B drift. At the same time, variation in the

particles’ energy and pitch angle associated with Er is

neglected. These replacements and omissions are chosen so

as to restore the variational form of the kinetic equation.5,6

These changes to the kinetic equation may be called the

“incompressible-E�B-drift” approximation.16 Some inves-

tigations have indicated that the incompressible-E�B-drift

approximation may be reasonably accurate for small Er but a

poor approximation for larger Er.
16,17 This issue of which

collisionless terms to include in the kinetic equation is effec-

tively a choice between particle trajectories, since thea)mattland@umd.edu
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collisionless guiding center trajectories are equivalent to the

characteristic curves of the drift-kinetic equation.

Another limitation of many past stellarator neoclassical

calculations is that they are often performed with simplified

models for collisions. The linearized Fokker-Planck collision

operator—the most accurate linear operator available—has

been implemented in a variety of tokamak neoclassical

codes.18–22 However, due to the numerical challenge of the

extra dimension in stellarators (i.e., the lack of toroidal

symmetry), many stellarator neoclassical codes retain only

pitch-angle scattering collisions, so coupling in the energy

dimension is eliminated. The pitch-angle scattering operator

lacks the momentum conservation property of the Fokker-

Planck operator, which is known to be important in many sit-

uations.23 Several techniques have been devised and

implemented9,24–26 to effectively restore momentum conser-

vation by post-processing the transport coefficients obtained

with a pure pitch-angle scattering operator, but these meth-

ods will not exactly reproduce calculations with the full line-

arized Fokker-Planck operator. The NEO-2 code has

implemented the full linearized Fokker-Planck operator for

stellarator geometry,10 but using a field-line-tracing method,

which makes it difficult to add the important effect of poloi-

dal E�B precession.

Here, we describe a new stellarator neoclassical code

SFINCS (the Stellarator Fokker-Planck Iterative Neoclassical

Conservative Solver) that can be used to explore the afore-

mentioned issues, comparing various models for effective

particle trajectories and collisions. Although we use the ter-

minology of “effective trajectories,” the code uses contin-

uum rather than Monte Carlo algorithms. The code solves

the 4D drift-kinetic equation for the distribution function,

retaining coupling in 2 spatial independent variables (toroi-

dal and poloidal angle) and 2 velocity independent variables

(speed and pitch angle), but neglecting radial coupling. (For

comparison, DKES5,6 is 3D since energy coupling is

neglected, while FORTEC-3D (Refs. 11 and 12) is 5D since

radial coupling is retained.) General nonaxisymmetric nested

flux surface geometry is allowed, one or more species may

be included, and several models for collisions are available,

including the full inter-species linearized Fokker-Planck op-

erator. The incompressible-E�B-drift trajectories are

implemented, as are several other options for trajectories that

include the true E�B drift. As we shall demonstrate, retain-

ing the true form of the E�B drift comes at a cost, requiring

sources/sinks in the kinetic equation in order for the solu-

tions to be well behaved. While all of the various options

for the particle trajectories have disadvantages, SFINCS

allows the options to be compared. As we will show in sev-

eral calculations for the LHD and W7-X stellarators, in

many experimentally relevant cases, the transport matrix ele-

ments are nearly identical for the various choices of particle

trajectories. However, differences between the trajectory

models emerge when the radial electric field grows compara-

ble to the “resonant” value.

In Sec. II, we motivate the form of the kinetic equation

solved by SFINCS, and detail the three models for particle

trajectories that will be compared. For several of the particle

trajectory models, additional sources/sinks and constraints

must be included in the system of equations for the equations

to be well posed and for the solutions to be well behaved.

These issues are explored in Sec. III. In Sec. IV, we discuss

some observations regarding momentum conservation and

demonstrate that the electric field terms in the kinetic

description correspond to a component of gyroviscosity in a

fluid description only for the most accurate trajectory model.

Details of the numerical implementation are given in Sec. V.

Some of the numerical results presented are given in terms

of a transport matrix, which is defined in Sec. VI. The nu-

merical results are presented in Secs. VII and VIII in which

we discuss the transport matrix elements for the geometries

of the LHD and W7-X stellarators, comparing a variety of

assumptions about the particle trajectories and collision op-

erator. In Sec. IX, we discuss the results and conclude.

II. KINETIC EQUATIONS

We begin with the drift-kinetic Eq. (19) of Ref. 27. The

standard drift ordering is applied at first: q*a � 1, where

q*a¼qa/L, vE=va � q�a; @=@t � q2
�ava=L, and �a � va/L.

Here, va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
is the thermal speed of species a, Ta is

the temperature, ma is the mass, qa ¼ vamac=ðZaeBÞ is the

gyroradius, Za is the species charge in units of the proton

charge e, c is the speed of light, L is a typical scale length,

and �a is a collision frequency. No expansion in mass ratios

or charges is made. We expand the distribution function

as fa¼ fa0 þ fa1 þ…. The leading order distribution function

fa0 is taken to be a Maxwellian that is constant on flux surfa-

ces when expressed in terms of total energy Wa ¼ v2=2

þZaeU=ma:

fa0 ¼ gaðwÞ
ma

2pTaðwÞ

� �3=2

exp �maWa

TaðwÞ

� �
: (1)

Here, U is the electrostatic potential and v is the speed. The

mean flow of this Maxwellian is taken to be zero since, as

argued in Refs. 14 and 15, sonic flows are not permitted in a

general stellarator. Taking fa1/fa0 � q*a, the terms of order

�q*a(v/L)fa0 in (19) of Ref. 27 are then

vjjb � rfa1ð ÞWa;l
� Ca ¼ � vma þ vEð Þ � rw

@fa0

@w

� �
Wa

þ Zae

mac
vjjb �

@A

@t

@fa0

@Wa
; (2)

where the radial magnetic drift is

vma � rw ¼
macv2

jj
ZaeB

b� ðb � rbÞ � rwþ macv2
?

2ZaeB2
b�rB � rw

¼ mac

2ZaeB2
v2
jj þ

v2
?
2

� �
b�rB � rw (3)

(exactly true for any b in a magnetic equilibrium with iso-

tropic pressure) and the E�B drift is vE ¼ ðc=B2ÞB�rU.

Here, b¼B/B is the unit vector along the magnetic field, vjj
and v? denote the components of velocity parallel and per-

pendicular to B, 2pw is the toroidal flux, A is the magnetic
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vector potential, and Ca is the collision term for species a,

linearized about the Maxwellians (1). Subscripts on gradients

and partial derivatives indicate the quantities held fixed, and

l ¼ v2
?=ð2BÞ is the magnetic moment.

Unfortunately, (2) does not contain the physics of E�B
precession, since the characteristic curves of this equation

correspond only to motion along the magnetic field lines.

Consequently, important transport regimes such as the
ffiffiffi
�
p

regime cannot be obtained using (2). To retain E�B preces-

sion, we also keep the term ðvE þ vmaÞ � rfa1 in (2), even

though according to the formal ordering it should appear at

next order. A similar step is made in other stellarator neo-

classical calculations.5,6 The mathematical reason why this

term is important at low collisionality is that it has different

symmetry properties than other, possibly larger, terms in (2).

For instance, it survives if a bounce average is used to anni-

hilate the first term. (We will not bounce average the kinetic

equation here, but when the collisionality is low, the solution

of the full equation becomes asymptotically close to the solu-

tion of the bounce-averaged equation.)

As shown in Appendix C of Ref. 28, we may choose the

gauge for the electromagnetic potentials such that

�c�1b � @A=@t ¼ hEjjBiB=hB2i (4)

on the right-hand side of (2). Here, angle brackets denote a

flux surface average

h…i ¼ 1

V0

ð2p

0

dh
ð2p

0

df
ð…Þ

B � rf
; (5)

where V0 ¼
Ð 2p

0
dh
Ð 2p

0
df=B � rf, h and f are poloidal and to-

roidal magnetic angles satisfying

B ¼ rw�rhþ irf�rw; (6)

i¼ 1/q is the rotational transform, and q is the safety factor.

Thus, (2) becomes

vjjbþ vE þ vma

� �
� rfa1ð ÞWa;l

� Ca

¼ � vma þ vEð Þ � rw
@fa0

@w

� �
Wa

þ Zae

Ta
vjj

BhEjjBi
hB2i fa0: (7)

Even if the radial electric field is considered an input, this

form of the kinetic equation remains nonlinear in the

unknowns since the rfa1 term depends on the variation of U
on a flux surface, and this variation is an unknown like fa1.

To make the problem linear, we make use of the fact

that the electrostatic potential is nearly a flux function. We

define U0¼hUi and U1¼U – U0. We assume U1 �U0, and

we will show shortly that this assumption is self-consistent.

Since eU0/Ta � 1 in the drift ordering, then eU1/Ta� 1. We

do not expand in the ion charge Za. Equation (1) then gives

fa0 � Fa 1� ZaeU1=Ta½ 	 where

Fa ¼ naðwÞ
ma

2pTaðwÞ

� �3=2

exp � mav2

2TaðwÞ

 !
(8)

and na ¼ gaexpð�ZaeU0=TaÞ is the leading order density.

We define the leading-order total energy Wa0 ¼ v2=2

þZaeU0=ma, and leading-order E�B drift vE0 ¼ ðc=B2Þ
ðdU0=dwÞB�rw. As the relative differences between fa0

and Fa, between Wa and Wa0, and between vE and vE0 are all

small, we may replace the former quantities with the latter

ones in (7). At the same time, we note

vE � rw
vma � rw

� 1

�

ZaeU1

Ta
; (9)

where � is the relative variation of B on a flux surface, and

taking the ratio (9) to be small, the vE � rw term in (7) may

be neglected. Thus, we obtain

vjjbþ vE0 þ vma
� �

� rfa1ð ÞWa0;l
� Ca

¼ �ðvma � rwÞ @Fa

@w

� �
Wa0

þ Zae

Ta
vjj

BhEjjBi
hB2i Fa; (10)

where Ca is now the collision operator linearized about Fa

rather than fa0,

@Fa

@w

� �
Wa0

¼ 1

pa

dpa

dw
þ Zae

Ta

dU0

dw
þ x2

a �
5

2

� �
1

Ta

dTa

dw

" #
Fa;

(11)

and xa¼ v/va. If Fa and U0 are considered known, then (10)

is now linear in the unknowns fa1, and U1 has decoupled

from the kinetic equations.

We note that in some circumstances, the ratio (9) may

not be small,3 particularly for impurities13 with Za 
 1.

However, treating the ratio (9) as finite leads to a kinetic

equation that is nonlinear in the unknowns. We neglect these

nonlinear effects of U1 in the present linear study, but such

effects will be important to examine in future work.

For numerical computations, it is convenient to use

coordinates for which the ranges of allowed values are inde-

pendent of the other coordinates. As Wa0 and l do not have

this property, it is convenient to switch to coordinates xa and

n ¼ vjj=v. Carrying out this change of variables on the first

term of (10), we find

_r � rfa1ð ÞWa0;l
¼ _r � rfa1ð Þxa;n

þ _xa
@fa1

@xa

� �
r;n

þ _na
@fa1

@n

� �
r;xa

; (12)

where r denotes the position vector,

_r ¼ vjjbþ vE0 þ vma; (13)

_xa ¼ ðvma � rwÞ � xa

2Ta

dTa

dw
� Zae

2Taxa

dU0

dw

� �
; (14)

and

_na¼�
1�n2

2Bn
vjjb �rBþnð1�n2Þ c

2B3

dU0

dw
B�rw �rB

�1�n2

2Bn
vma �rB: (15)
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For the rest of this work, we will neglect the vma term in

(13), the dTa/dw term in (14), and the vma � rB term in

(15), for several reasons. First, if the vma term in (13) was

retained, we would need to solve a 5D rather than 4D

problem due to the radial coupling (i.e., w appearing as a

derivative rather than merely as a parameter). Second, once

radial coupling is dropped, we must also drop the dTa/dw
term in (14) and the vma � rB term in (15) in order for l to

be conserved. Third, dropping these terms conveniently

eliminates all dependence of the transport matrix (defined

in Sec. VI) on dTa/dw, dB/dw, and q*. Fourth, dropping

these terms amounts to taking the limit q*! 0 (while keep-

ing the dU0/dw terms finite), and this limit is already com-

plicated and interesting to explore without the extra

complexity of finite-q* corrections. Fifth, we wish to focus

on the effects of the radial electric field. The omitted terms

may be important in other situations, but here our primary

interest is the treatment of the dU0/dw terms. Finally, these

omitted terms would significantly complicate the analysis

in Sec. III in which we will examine moments of the kinetic

equation.

Our kinetic equation then becomes

_r � rfa1ð Þxa;n
þ _xa

@fa1

@xa

� �
r;n
þ _na

@fa1

@n

� �
r;xa

� Ca

¼ �ðvma � rwÞ @Fa

@w

� �
Wa0

þ Zae

Ta
vjj

BhEjjBi
hB2i Fa; (16)

where the effective particle trajectory equations are

_r ¼ vjjbþ
c

B2

dU0

dw
B�rw;

_xa ¼ �ðvma � rwÞ Zae

2Taxa

dU0

dw
;

_na ¼ �
1� n2

2Bn
vjjb � rB

þ nð1� n2Þ c

2B3

dU0

dw
B�rw � rB: (17)

We will refer to (17) as the “full trajectories.”

The dU0/dw terms in _xa and _na may be interpreted as a

finite orbit width effect. As a particle drifts radially, it expe-

riences a varying electrostatic potential (even if the poten-

tial is a flux function.) Thus, the potential energy of the

particle changes, so to maintain a constant total energy, the

kinetic energy must change at an equal and opposite rate,

giving rise to the dU/dw term in _xa. Then to conserve l
while v changes, n must also change appropriately, giving

rise to the dU0/dw term in _na. Without these dU0/dw terms

in _xa and _na, l will not be conserved, whereas you can

verify that l is indeed conserved by (17). Note that the

dU0/dw term in _r is the same order in the q* expansion

as the dU0/dw terms in _xa and _na, suggesting that if the for-

mer term is retained, the latter terms should be retained as

well.

A large number of stellarator neoclassical codes4–6 effec-

tively solve (16) with the alternative trajectory equations

_r ¼ vjjbþ
c

hB2i
dU0

dw
B�rw;

_xa ¼ 0;

_na ¼ �
1� n2

2Bn
vjjb � rB:

(18)

We refer to these equations as the “DKES trajectories,” in

light of their use in the widely applied code DKES.5,6 These

trajectories differ from (17) both in the neglect of the dU0/dw
terms in _xa and _na, and in the replacement B2 ! hB2i in _r .

The motivation for approximating the E�B drift in this mat-

ter will be clarified in Sec. III. As shown in Refs. 17 and 29,

in a symmetric magnetic field, the model (18) possesses a con-

served quantity, which is equal to l when dU0/dw¼ 0 but

which differs from l when dU0/dw 6¼ 0.

For comparison, we will also consider the following set

of trajectory equations:

_r ¼ vjjbþ
c

B2

dU0

dw
B�rw;

_xa ¼ 0;

_na ¼ �
1� n2

2Bn
vjjb � rB;

(19)

which will be referred to as the “partial trajectories.”

Equations (19) represent an intermediate step between (17)

and (18), in that (19) includes the correct E�B drift, but not

the dU0/dw terms in _xa and _na required to conserve l.

Note that for both the DKES and full trajectories, the

left-hand side of the kinetic Eq. (16) can be written in the

conservative form

1

J
r � J _rafa1ð Þ þ @

@n
J _nafa1

� �
þ @

@xa
J _xafa1ð Þ

� �
� Ca; (20)

where J ¼ x2
a is the Jacobian of the transformation between

Cartesian velocity coordinates and the coordinates xa, n, and

gyrophase. However, for the partial trajectories, the left-hand

side of (16) is not equivalent to (20).

For all three trajectory models, the quasineutrality equa-

tion is effectively decoupled from the kinetic Eq. (16). At

leading order, quasineutrality implies
P

a Zana ¼ 0. At next

order, noting that both fa0 and fa1 contribute to density varia-

tion on a flux surface,

X
a

�Z2
aeU1

Ta
na þ Za

ð
d3v fa1

� �
¼ 0: (21)

This equation may be solved for U1, giving the variation of

the potential on a flux surface. It follows that eU1=Ta

� fa1=fa0 � q�a, so our earlier assumption that eU1/Ta� 1 is

self-consistent.

Several choices can be made for the collision operator.

The most accurate linear option is the Fokker-Planck opera-

tor30,31 linearized about the Maxwellians: Ca ¼
P

b C‘
ab,

where C‘
ab ¼ Cabffa1;Fbg þ CabfFa; fb1g and Cab is the full

bilinear Fokker-Planck operator between species a and b.

This linearized operator may be written in many forms; for
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numerical implementation, we find it convenient to use the

form detailed in Eqs. (14)–(16) of Ref. 22.

A simpler option used in many codes is the pitch-angle

scattering operator.4 This operator lacks several properties of

the linearized Fokker-Planck operator, such as the momen-

tum conservation property
Ð

d3v vjjC‘
aa ¼ 0. Several more

accurate approximate operators have been used in the litera-

ture. One such operator we will consider later consists of the

pitch-angle scattering operator plus an ad-hoc momentum-

restoring term, given for the case of self-collisions by Eq.

(3.69) in Ref. 31.

III. PARTICLE AND ENERGY MOMENT EQUATIONS,
CONSERVATION PROPERTIES, AND SOURCES

If one attempts to solve the kinetic Eq. (16) numerically

using either the full or partial trajectories and Er 6¼ 0, unphysi-

cal results will be obtained, with the numerical solution not

converging as resolution parameters are increased. We now

explore the reason for this behavior. We will then describe a

modified form of the kinetic equation, which robustly produces

more sensible results. The issues discussed in this section are

related to moment equations for mass and energy; momentum

has a different status and will be examined in Sec. IV.

Consider the result of applying the operationð
d3vð…Þ

	 

(22)

to the kinetic Eq. (16) for each of the trajectory models

(17)–(19). This operation annihilates the streaming and mir-

ror terms, the collision operator, and the inhomogeneous

drive terms. The operation (22) effectively produces a flux-

surface-averaged mass conservation equation for each

model. For the full trajectories and DKES trajectories, the

dU0/dw terms are also annihilated by (22), so the resulting

mass conservation equation is just 0¼ 0. However, for the

partial trajectories, the dU0/dw term (vE0 � rfa1) is not anni-

hilated by (22), leaving

c
1

B2
B�rw � r

ð
d3v fa1

	 

dU0

dw
¼ 0: (23)

Thus, a nonzero dU0/dw gives a singular perturbation to the

dU0/dw¼ 0 limit in this partial trajectory model: the

dU0/dw¼ 0 solution for fa1 need not satisfy hð1=B2ÞB�rw
�r
Ð

d3v fa1i ¼ 0, so fa1 must change dramatically as Er is

raised from 0 to a small nonzero value, a behavior which is

unphysical. When dU0/dw 6¼ 0, (23) constrains fa1 in an

unphysical manner, for there is no analogue to (23) in the

more accurate averaged fluid mass conservation equation

0 ¼ h@Na=@tþr � ðNaVaÞi (i.e., the moment of the full

Fokker-Planck equation with no expansion in q* or other pa-

rameters), where Na and Va are the full fluid density and ve-

locity. The unphysical nature of (23) can also be seen from

the fact that when the dU0/dw terms in _xa and _na are retained

in the more accurate trajectories (17), these terms precisely

cancel (23).

Similarly, we can obtain an averaged energy conservation

equation for each trajectory model by applying the operation

X
a

	ð
d3v

mav2

2
ð…Þ



(24)

to (16). Again, the result is 0¼ 0 for the DKES trajectories.

However, this time both the full and partial trajectory models

give nonzero results: the partial trajectories give

c
X

a

	
1

B2
B�rw � r

ð
d3v

mav2

2
fa1



dU0

dw
¼ 0 (25)

and the full trajectories give

�c
X

a

1

B2
B�rw � r

ð
d3v

mav2

2

ð1þ n2Þ
2

fa1

	 

dU0

dw
¼ 0:

(26)

The quantity multiplying dU0/dw in (26) is proportional to

the radial current
P

a Zah
Ð

d3v fa1vma � rwi, so it vanishes

naturally when Er is at the ambipolar value. However, as the

radial current would usually not be zero when Er¼ 0, (26)

again implies a small nonzero Er would be a singular pertur-

bation of the Er¼ 0 limit.

One motivation for use of the DKES trajectory model is

now apparent: it is the only model (of the three considered

here) that avoids the imposition of one or more unphysical

constraints on the distribution function when dU0/dw 6¼ 0, con-

straints which cause an Er 6¼ 0 calculation to be a singular per-

turbation of an Er¼ 0 calculation.

The aforementioned problems with the partial and full

trajectory models may be eliminated in the following man-

ner. The kinetic equation becomes well behaved if we intro-

duce particle and heat sources

Saðw; vÞ ¼ SapðwÞFaðw; vÞ x2
a �

5

2

� �

þ SahðwÞFaðw; vÞ x2
a �

3

2

� �
; (27)

where Sap and Sah are considered to be unknowns. (The factors

involving x2
a in (27) are chosen so Sap provides a particle source

but no heat source, while Sah provides a heat source but no parti-

cle source.) As these two new unknowns are now included in

the system of equations on each flux surface, we must supply an

equal number of additional constraints. The constraints we sup-

ply are h
Ð

d3v fa1i ¼ 0 and h
Ð

d3v v2fa1i ¼ 0, the sensible

requirements that all the flux-surface-averaged density and pres-

sure reside in Fa rather than fa1. When Sa is included in the ki-

netic equation, new terms proportional to Sap and/or Sah now

appear in the mass and energy conservation equations such as

(23)–(26). These conservation equations imply that when

dU0/dw¼ 0, Sap and Sah must vanish. However, now when

dU0/dw is increased from 0 to a small finite number, the sources

can turn on to satisfy (23)–(26), eliminating the singular pertur-

bation in fa1. We find that numerical results are then well

behaved, converging appropriately as numerical resolution pa-

rameters are increased, and smoothly going to the Er¼ 0 results

as Er is decreased.

We do not claim that the method proposed here is an

ideal solution: the sources (27) are ad-hoc and are not
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derived rigorously. However, by the techniques proposed

here, we can at least compare the three different trajectory

models, and for most experimentally relevant values of

Er, we will show that the three models give nearly identi-

cal results. And as already mentioned, the source terms

for the full trajectory model are both zero when the radial

electric field equals the value required for ambipolarity,

so for this model, the source terms are really a numerical

expedient that do not affect the transport computations in

the end.

This system of sources and constraints solves not only

the problem described above when Er 6¼ 0 but also a different

problem that remains even when Er¼ 0 and/or when the

DKES trajectories are used: the kinetic equation has a null

space. If the conditions h
Ð

d3v fa1i ¼ 0 and h
Ð

d3v v2fa1i ¼ 0

were not imposed, any linear combination of Fa and Fav
2

could be added to one solution of the kinetic equation to

obtain another solution. Upon discretization, one would

obtain a non-invertible (or at least very poorly conditioned)

linear system, but the imposition of these two extra con-

straints makes the system of equations invertible.

Such is the case when the full linearized Fokker-Planck

collision operator is used, but the situation is different

when either the pitch-angle scattering operator or

momentum-conserving model operator are used instead, for

then the kinetic equation has a larger null space: any func-

tion of v is then a homogeneous solution of the kinetic

equation. As the dimension of the null space is then equal

to Nx (the number of grid points in xa) rather than 2, it takes

Nx rather than 2 constraint equations to eliminate the null

space for these collision operators. We choose these Nx

constraints to be h
Ð 1

�1
dn fa1i ¼ 0 (imposed at each grid

point in xa). To keep the linear system square, we must then

have Nx rather than 2 unknowns related to the sources. This

is accomplished by letting the source be a general function

of xa instead of (27) when either the pitch-angle scattering

or momentum-conserving model collision operator are

used. This alternative system of Nx sources and constraints

is an equally reasonable solution to the earlier conservation

problem.

To summarize, the sources and extra constraint equa-

tions serve two independent purposes. First, when Er 6¼ 0,

the sources are needed to eliminate the conservation prob-

lems, and the extra constraints then keep the linear system

square (number of equations¼ number of unknowns)

upon discretization. Second, even when Er¼ 0, and even

for the DKES trajectories in which sources are not

required, the constraints are needed to eliminate the null

space in the kinetic equation, and the source terms are a

convenient way to keep the linear system square upon dis-

cretization. The first problem can be solved with either

the source (27) or a general speed-dependent source

Sa(xa). However, to solve the second problem, the number

of constraints should match the dimensionality of the null

space. For this reason, we apply the source (27) with 2

constraints when the Fokker-Planck operator is used,

while we apply the general speed-dependent source Sa(xa)

with Nx constraints when either of the other two collision

operators is used.

IV. MOMENTUM MOMENT EQUATIONS

Parallel momentum has a different status to density and

energy, in that density and energy are conserved by the collision-

less motion while parallel momentum is not, due to the mirror

force. (For example, considering the case of a single ion species

with dU0/dw¼ 0, Fi and v2Fi are homogeneous solutions to the

kinetic equation, whereas vjjFi is not.) A consequence is that

there does not appear to be a false constraint for Er 6¼ 0 arising

from the h
Ð

d3v vjjð…Þi moment of the various forms of the ki-

netic equation, i.e., there is no analogue to (23), (25), or (26) for

momentum. When the momentum moment of the various forms

of the drift-kinetic equation is taken, even if a factor of B or 1/B
is included in the flux surface average, a collisionless term

remains that is not proportional to dU0/dw. Consequently, for all

the trajectory models, dU0/dw¼ 0 is a well behaved rather than

singular limit of the momentum moment equation.

Nonetheless, it is interesting to compare the
Ð

d3v mavjj
ð…Þ moment equations for each drift-kinetic trajectory model

to the full parallel momentum fluid equation. This later equa-

tion, the moment of the full Fokker-Planck equation, is

0 ¼ �b � r �Pað Þ þ ZaenaEjj þ Fajj; (28)

where Pa ¼ ma

Ð
d3v favv is the stress tensor and Fajj is the

parallel component of friction. First, consider the case of no

radial electric field. Recalling fa ¼ FaðwÞ 1� ZaeU1=Ta½ 	
þ fa1, the stress tensor is given to the accuracy needed by

Pa � paðwÞ 1� ZaeU1=Ta½ 	I þPa1 where Pa1 ¼ pa1?I

þðpa1jj � pa1?Þbb, pa1jj ¼ ma

Ð
d3v fa1v2

jj, and pa1? ¼ maÐ
d3v fa1v2

?=2. Notice the
Ð

d3v mavjjð…Þ moment of the

streaming and mirror terms in (16)–(17) isð
d3v mavjj vjjb � rfa1 �

1� n2

2B
vðb � rBÞ @fa1

@n

" #

¼ b � rpa1jj þ
pa1? � pa1jj

B
b � rB

¼ b � r �Pa1ð Þ: (29)

Using this result with (4), the mavjj moment of the drift-

kinetic Eqs. (16) and (17) matches the full fluid parallel mo-

mentum Eq. (28) at least when Er¼ 0.

Now consider how the situation changes when a radial

electric field is introduced. We first compute the change to

the fluid parallel momentum equation caused by a new con-

tribution to the viscosity. Examining the Eþ c�1v� Bð Þ �
rvfa terms in the full Fokker-Planck equation and integrat-

ing in gyrophase, one sees the gyrophase-dependent part of

the distribution function ~fa will include the following terms

proportional to the electric field:

~faE ¼
c

B
v � b� E

1

v
@�f a

@v
� n

v2

@�f a

@n

� �
(30)

as reflected (using different independent variables) in Eq.

(17) of Ref. 27 and Eq. (6) of Ref. 32. Here, �fa is the

gyrophase-independent part of the distribution function. The

associated contribution PaE ¼ ma

Ð
d3v ~f aEvv to the pressure

tensor is calculated in Eqs. (27)–(36) of Ref. 32, with the

result
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PaE ¼ manaVajj bvE þ vEbð Þ; (31)

where naVajj ¼
Ð

d3v favjj. Note that this contribution to the

stress tensor is a part of the gyroviscosity and is off-

diagonal. Using E � �rU0ðwÞ and B � r � BB�rw½
�

þðB�rwÞB	g ¼ 2B2rw � r � B ¼ 0, we then find the

contribution to the parallel momentum Eq. (28) from

(30)–(31) is

b � ðr�PaEÞ¼ cmaBðdU0=dwÞB�rw �rðnaVajj=B3Þ: (32)

For comparison, let us consider the
Ð

d3v mavjjð…Þ
moment of the radial electric field terms in the drift-kinetic

equation for various trajectory models, to see if the results

agree with (32). For the full trajectories, the moment of the

dU0/dw terms in (16) and (17) isð
d3v mavjj

�
c

B2

dU0

dw
B�rw � rfa1 � ðvma � rwÞ

� Zae

2Taxa

dU0

dw
@fa1

@xa
þ nð1� n2Þ c

2B3

dU0

dw

� ðB�rw � rBÞ @fa
@n

�
¼ cmaBðdU0=dwÞB�rw � r naVajj=B3

� 
; (33)

obtained by integrating by parts in xa and n. Thus, the full-

trajectory model agrees with the full fluid parallel momentum

equation: (33)¼ (32). However, this agreement is not shared by

the DKES model: the moment of the dU0/dw term in (18) isð
d3v mavjj

c

hB2i
dU0

dw
B�rw � rfa1

� �

¼ cma

hB2i
dU0

dw
B�rw � rðnaVajjÞ; (34)

which does not equal (32). The corresponding result for the

partial trajectories, obtained by replacing hB2i ! B2 in (34),

also does not match (32). Thus, the DKES and partial trajec-

tory models do not correctly account for the parallel viscous

force as the full trajectory model does.

We close this section by noting another important differ-

ence between the trajectory models related to the parallel

momentum equations. Consider the case of quasisymmetry,

which is the condition that B�rw � rB ¼ AðwÞB � rB for

some flux function A(w).33 It was known previously33 that

when the Er terms are not included in the trajectories (but

retained in the @Fa/@w drive term in (16)), the radial neo-

classical current vanishes for all values of dU0/dw if and

only if the flux surface is quasisymmetric. This property of

quasisymmetric flux surfaces is known as intrinsic ambipo-

larity. Here, we show that intrinsic ambipolarity persists in

quasisymmetric geometry when the Er terms are retained in

the full trajectory drift-kinetic equation, but not for the

DKES or partial trajectory kinetic equations. This result fol-

lows from the �
P

a Za h
Ð

d3v Avjj=Xað…Þi moment of the

kinetic equations, i.e., a spatially weighted average of the

parallel momentum moment. For the full trajectories, (33)

vanishes in this spatial average, leaving

X
a

Za

	ð
d3v fa1vma � rw



¼ 0; (35)

meaning there is no radial current. However, for the DKES

and partial trajectory models, the spatial average does not an-

nihilate the dU0/dw term, leaving an additional term in (35)

proportional to dU0/dw, and therefore the radial current is

generally nonzero. Consequently, the full trajectory model is

the only one of the models that preserves intrinsic ambipolar-

ity in quasisymmetry for Er 6¼ 0. Notice that when the full

trajectory model is applied in quasisymmetry, intrinsic ambi-

polarity means (26) is satisfied even when dU0/dw 6¼ 0, so

the net heat source vanishes for any radial electric field.

V. NUMERICAL IMPLEMENTATION

The SFINCS code solves the drift-kinetic Eq. (16) with

(27) for any of the three trajectory models (17)–(19), for gen-

eral nonaxisymmetric nested flux surface geometry, and for

an arbitrary number of species. SFINCS is based on the

Fokker-Planck code described in Ref. 22, generalized to

allow nonaxisymmetry. SFINCS is also closely related to the

radially global Fokker-Planck code for tokamaks described

in Ref. 34. Briefly, the kinetic equation is discretized using

finite differences with a 5-point stencil in h and f, using a

truncated Legendre modal expansion in n, and using a spec-

tral collocation method in xa. The time-independent kinetic

equation is solved directly (by solving a single sparse linear

system), so the rate of convergence is not limited by the

timescale of physical relaxation. The modifications com-

pared to the code of Ref. 22 are the following. (1) fa1, B, and

other geometric operators are allowed to depend on the toroi-

dal angle f, and the numerical grid is expanded to include

this new coordinate. (2) The additional dU0/dw terms in

_ra; _xa, and _na are included. (3) The additional collision oper-

ators discussed above are included. (4) The extra constraint

equations and sources are implemented as in (19) of Ref. 34.

Specifically, considering first the case of a single species for

simplicity, the linear system has the block structure

Kinetic equation f
h
Ð

d3vfa1i ¼ 0 f
h
Ð

d3vfa1v2i ¼ 0 f

M11 M12 M13

M21 0 0

M31 0 0

0
BB@

1
CCA

fa1

Sap

Sah

0
BB@

1
CCA

|fflfflfflffl{zfflfflfflffl}
Vector of unknowns

¼
R

0

0

0
BB@

1
CCA; (36)
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where R is the inhomogeneous term (i.e., the right-hand side)

from (16), and the M operators are as follows: M11 represents the

operator on the left-hand side of (16), M12 and M13 represent the

Sap and Sah terms in (27), respectively, and M21 and M31 represent

the aforementioned extra constraint equations introduced. For the

case of multiple particle species, the linear system consists of

blocks of the form (36) for each species, with coupling between

species only through the collision operators in the M11 blocks.

The resulting large sparse linear system is solved using the

PETSc35,36 library. A preconditioned iterative Krylov solver is

employed, either GMRES37 or BICGStab(l).38 An effective

preconditioner is typically obtained by dropping all coupling in

the xa coordinate, either for all Legendre modes in n, or for all

but the first one or two Legendre modes. The preconditioner is

LU-factorized directly using the SuperLU-dist39,40 package.

Note that poloidal and toroidal magnetic drifts could be

included in the kinetic equation without increasing the density

of the matrix, i.e., without increasing the computational

expense of the method here. We do not expect any fundamental

new complications to arise if poloidal and toroidal magnetic

drift terms are retained. However, to include radial drifts acting

on fa1, the number of independent variables would increase

from 4 to 5 since different flux surfaces would couple. This

increase in dimensionality would be numerically challenging.

The magnetic geometry is specified in Boozer coordi-

nates h and f in which

B ¼ bðw; h; fÞrwþ IðwÞrhþ GðwÞrf: (37)

Here, cI/2 is the toroidal current inside the flux surface, and

cG/2 is the poloidal current outside the flux surface. The geo-

metric operators needed in the kinetic equation are then

B � rX ¼ i
@X

@h
þ @X

@f

� �
B � rf (38)

and

B�rw � rX ¼ G
@X

@h
� I

@X

@f

� �
B � rf; (39)

where X can be any scalar quantity, and the inverse coordi-

nate Jacobian is B � rf ¼ B2=ðGþ iIÞ. Thus, the magnetic

geometry enters the kinetic equation only through the quanti-

ties I, G, i, and B(h, f).

VI. ION TRANSPORT MATRIX

We will present results of the numerical calculations in

terms of the transport matrix Ljk, defined as follows:

ZeðGþ iIÞ
ncTG

ð
d3v fvm � rw

	 

ZeðGþ iIÞ

ncTG

ð
d3v f

mv2

2T
vm � rw

	 

1

viB0

hBVjji

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

L11 L12 L13

L21 L22 L23

L31 L32 L33

0
BB@

1
CCA

GTc

ZeB0vi

1

n

dn

dw
þ Ze

T

dU
dw
� 3

2T

dT

dw

� �
GTc

ZeB0viT

dT

dw

Ze

T
ðGþ iIÞ

hEjjBi
hB2i

0
BBBBBBBBB@

1
CCCCCCCCCA
: (40)

Here, B0 is the (0, 0) Fourier mode amplitude of B(h, f), and

we have dropped i subscripts where possible to simplify the

notation. When the DKES trajectories (18) are used, it can

be shown that Ljk is symmetric for any value of Er. When the

trajectories (17) or (19) are used and Er¼ 0, Ljk is symmetric

as well. However, when the trajectories (17) or (19) are used

and Er 6¼ 0, the transport matrix defined in this manner is

generally not symmetric.

Different definitions of the transport matrix have been

given elsewhere in the literature,16 but the definition here has

several nice properties. First, the matrix is dimensionless.

Second, Ljk is symmetric (in the cases described above).

Third, Ljk depends on the magnetic geometry and physical pa-

rameters only through B/B0, I/G, i, a normalized collisionality

�0 ¼ ðGþ iIÞ�ii

viB0

; (41)

and a normalized electric field

E� ¼
cG

iviB0

dU0

dw
; (42)

and not on any other individual parameters such as

density, temperature, G, etc. In (41), �ii ¼ 4
ffiffiffiffiffiffi
2p
p

nZ4e4lnK=
ð3m1=2T3=2Þ is the ion-ion collision frequency. Typically, I
� G and G � B0R, where R is the major radius of the device,

so �0 � �iiR=vi. In axisymmetry, E* corresponds to the poloi-

dal Mach number: E� � ðB=BpolÞjvE0j=vi, where Bpol is

the poloidal magnetic field. Therefore, E* corresponds to

the electric field normalized by the so-called resonant electric

field16 Eres
r ¼ riviB=ðRcÞ, with r/R the inverse aspect ratio.

Several properties of the matrix Ljk are noteworthy. Using

the property
Ð

d3vðg=FiÞCiifgg � 0 for any g, which holds for

all three ion-ion collision operators considered here, then

sgnðL11Þ ¼ sgnðL22Þ ¼�sgnðL33Þ ¼�sgnððGþ iIÞ=B0Þ. This

property holds when Er¼0, and it holds when Er 6¼ 0 for the

DKES trajectories, but it may not hold when Er 6¼ 0 for the

partial or full trajectories. Second, for all three trajectory mod-

els, the elements Ljk are independent of the sign of the electric

field: Ljk(E*)¼Ljk(–E*), assuming the stellarator symmetry

property B(h, f)¼B(�h, –f) for some choice of the origin of

h and f. This symmetry of Ljk follows from a symmetry in the

kinetic equation: if the signs of h, f, vjj, and dU0/dw are all
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reversed in (16), the sign of fi1 will reverse, leaving the

left-hand side of (40) unchanged.

VII. COMPARISON OF Er TERMS

Figures 1 and 2 show a SFINCS computation of the ion

transport matrix elements for the 3 trajectory models in two

different stellarator geometries. The calculations in Figure 1

are performed for the r/a¼ 0.5 surface of the LHD stellara-

tor41 in its standard configuration. (Here, the flux function r
is defined to be proportional to the square root of the toroidal

flux enclosed by the flux surface in question.) The calcula-

tions in Figure 2 are performed for the r/a¼ 0.5 surface of

the W7-X stellarator42,43 in its standard configuration. In the

LHD calculation, only the Boozer harmonics of B(h, f)/B0

with amplitude> 10�2 are retained, as listed in Table I of

Ref. 4, whereas all harmonics with relative amplitude

>4� 10�5 are retained for the W7-X calculations. For both

figures, the Fokker-Planck collision operator is used, and the

collisionality is set to �0 ¼ 0:01. As both figures illustrate,

the electric field has negligible effect on the transport matrix

elements when E*< 0.01. For these small values of the elec-

tric field, the radial step size for diffusion is limited by colli-

sions rather than by E�B precession. As Er ! 0, all the

matrix elements converge smoothly to their Er¼ 0 limits.

For E* in the range [0.01, 0.3], the E�B precession sup-

presses radial transport, as can be seen by the reduction in

jL11j and jL22j. In this regime of E*, the three trajectory mod-

els give nearly identical results for all the transport matrix

elements. However, once E* exceeds about 0.3, the results

from the three trajectory models begin to separate.

In all probability, the reason why the three trajectory

models agree so well with each other below the resonance is

that they all capture the principal mechanism of transport in

the
ffiffiffi
�
p

-regime. The E�B drift convects most locally

trapped particles poloidally around the torus, thus preventing

them from drifting to the wall, and the transport is instead

dominated by shallowly trapped and barely passing particles

that are scattered back and forth across the trapped-passing

boundary on a time scale equal to the poloidal convection

time.3 This behavior is not likely to be affected by the

approximations made in the DKES and partial trajectory

models.

In the typical “ion root” scenario, E* can be estimated

by noting that the ambipolar electric field arises to bring the

ion particle transport down to the electron level, and is there-

fore approximately determined so as to reduce the magnitude

of the thermodynamic force appearing as the first component

of the vector on the right-hand side of (40). The electric field

is thus of order Er � T/(eL?), where L? denotes the length

scale corresponding to the pressure gradient. It is thus

expected that E* is of order E*� qh/L?, where qh¼ q/(i�)
and � is the inverse aspect ratio, and the ratio qh/L? is typi-

cally �1. In W7-X, E* is predicted to be a few percent in

normal plasma scenarios.44 The largest Er in normal W7-X

scenarios is predicted to be a few tens of kV/m, in the edge

where density gradients are steep, corresponding to E* up to

a few tenths.44 However, in other previous experiments, sce-

narios with strong electron heating can cause Te
 Ti, giving

rise to large positive “electron root” electric fields.45 In these

scenarios, E* may be � 1.

FIG. 1. Comparison of trajectory models for LHD standard geometry at �0 ¼ 0:01, using linearized Fokker-Planck collisions. The ion transport matrix elements

(defined in (40)) are plotted as functions of the normalized radial electric field (42). Results for Er¼ 0 are indicated by the " symbol to the left of each plot.

042503-9 Landreman et al. Phys. Plasmas 21, 042503 (2014)



Further analysis of whether the choice of trajectory

model is significant in W7-X is shown in Figure 3. This cal-

culation is based on the scenario considered in Figure 5 of

Ref. 44. We focus on the radial location r¼ 0.45 m

(r/a¼ 0.88) in which the pressure gradient is strong. This

gradient should result in a large Er, as predicted both by the

argument in the preceding paragraph, and by the modeling in

Ref. 44 based on incompressible-E�B computations. (Here,

the flux label r is defined by pr2B0 ¼ 2pw.) Matching the pa-

rameters in that work, we consider a pure hydrogen plasma

with n¼ 6.6� 1019 m�3, Te¼ Ti¼ 1 keV, dn=dr ¼ �1:2
�1021m�4, and dTe=dr ¼ dTi=dr ¼ �16 keV=m. These val-

ues correspond to �0 ¼ 0:03 and Eres
r ¼ 100 kV=m. For this

scenario, kinetic electrons are included in SFINCS along

with the ions. Inter-species linearized Fokker-Planck colli-

sions are included with no expansion in mass ratio.

The radial fluxes of ions and electrons as functions of Er

are shown in Figure 3(a). The electron fluxes (dashed curves)

are very small ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
Þ compared to the ion fluxes and

are identical between the three trajectory models. No differ-

ence between the models is expected for the electrons, since

E* defined using the electron rather than ion thermal speed is

always � 1. The vertical magenta dotted line indicates the

ambipolar value of Er � �33 kV/m, which is effectively

identical for the three trajectory models, and comparable to

the value predicted in Ref. 44. This electric field is roughly

one third of the resonant value, and therefore the ion trans-

port coefficients are just beginning to separate for the three

models. Heat fluxes are shown in Figure 3(b), showing simi-

lar behavior to the particle fluxes.

Figure 3(c) shows the surface-averaged ion parallel

flow. At the ambipolar value of Er, the three trajectory

models yield similar values for the predicted flow. At lower

magnitudes of Er, the flows predicted by the three models

are nearly indistinguishable. However, at larger electric

fields, the three models begin to give quite different predic-

tions. This change in behavior around E* � 0.3 is consistent

with the patterns in Figures 1 and 2. A similar pattern is visi-

ble in the bootstrap current density, shown in Figure 3(d). At

the ambipolar value of Er, the partial trajectory model pre-

dicts 27% more bootstrap current than the full trajectory

model, and the DKES model predicts 8% more bootstrap

current than the full trajectory model. Interestingly, if the

electric field exceeds 60 kV/m in the inward (ion root) direc-

tion, the bootstrap current in the full trajectory model

changes sign, whereas there is no sign change in the DKES

model.

Figures 3(e) and 3(f) illustrate the ion particle and heat

sources computed as part of the calculation. As expected,

the particle and heat sources are zero for the DKES model;

and for the full trajectory model, the particle source is

always zero and the heat source vanishes at the ambipolar

Er. Electron sources are negligible. The plots show SHp and

SHh from (27) normalized to a gyro-Bohm transport time

scale tgB¼ L2/DgB with DgB¼ (qi/L)cT/(eB0), thereby

roughly normalizing the numerical sources to the scale of

real physical sources arising from the divergence of the

turbulent and neoclassical fluxes. For this comparison, we

choose L¼�n/(dn/dr) to be the density scale length. For

the range of electric fields considered, the numerical sour-

ces are small on this transport time scale, giving confi-

dence in the model. For the parameters considered, �ii

tgB¼ 0.4, so dividing the values in Figures 3(e) and 3(f) by

this factor, the source terms evidently remain much smaller

FIG. 2. Comparison of trajectory models for W7-X standard geometry at �0 ¼ 0:01, using linearized Fokker-Planck collisions. The ion transport matrix elements

(defined in (40)) are plotted as functions of the normalized radial electric field (42). Results for Er¼ 0 are indicated by the " symbol to the left of each plot.

042503-10 Landreman et al. Phys. Plasmas 21, 042503 (2014)



than the collision term in the kinetic equation for this

calculation.

VIII. COMPARISON OF COLLISION OPERATORS

Figures 4 and 5 show the transport matrix elements for

the LHD and W7-X geometries described earlier, this time

comparing the different collision operators as a function of

collisionality. The comparison is done for dU0/dw¼ 0, so the

three trajectory models become identical, and the sources Sa

vanish. It can be seen in the figures that at high collisionality,

momentum conservation is important for all the transport

matrix elements (with the possible exception of L22.) At low

collisionality, momentum conservation is unimportant for

L11, L12, L21, and L22. These matrix elements represent

1/�-regime radial transport (when �0 � 1), which is associ-

ated with pitch-angle scattering of helically trapped particles.

Thus, the pitch-angle scattering approximation for collisions

accurately captures the dominant physics in these cases.

When dU0/dw 6¼ 0, the same is true for the
ffiffiffi
�
p

-regime, where

the main effect of the collisions is to scatter particles across

a thin collisional boundary layer in velocity space around the

trapped-passing boundary.

The other matrix elements (L13, L23, L31, L32, and L33)

are more sensitive to momentum conservation at low colli-

sionality. For all the matrix elements at all collisionalities,

the momentum-conserving model operator reproduces all the

trends of the more accurate linearized Fokker-Planck opera-

tor, though with some O(1) differences.

Note in Figs. 4 and 5 that the scaling of the L11 and L12

coefficients at high collisionality depends crucially on

whether momentum is conserved in the collision operator. In

the momentum-conserving calculations, these transport coef-

ficients are inversely proportional to �, whereas they are pro-

portional to � if the collisions are approximated by pure

pitch-angle scattering. To understand why, it is useful to

recall that the Pfirsch-Schl€uter particle flux consists of two

terms: one related to the parallel friction force and one

related to parallel viscosity.46,47 This is most easily seen by

taking the scalar product of the lowest-order plasma current,

which satisfies J � B ¼ cp0ðwÞrw, with the momentum

equation,

manaVa � rVa ¼ naea �rUþ c�1Va � B
� �

�rpa �r � pa þ Fa; (43)

neglecting the left-hand side. Since r � J ¼ 0 and na is a flux

function in lowest order, we obtain

hnaVa � rwi ¼ 1

eap0ðwÞ hJ � Fa �r � pað Þi; (44)

where the term corresponding to the perpendicular compo-

nent of the friction force Fa represents the classical particle

flux and the other terms the neoclassical flux,

hnaVa � rwinc ¼
1

eap0
hJkFak þ pa : rJi; (45)

where the viscosity tensor is pa ¼ ðpak � pa?Þðbb� I=3Þ.
The first term in (45) is proportional to � and therefore domi-

nates at high collisionality, but vanishes when there is only a

single ion species because of momentum conservation in

like-particle collisions. All that remains is therefore the parti-

cle flux caused by parallel viscosity, which is inversely

proportional to � at high collisionality.31 In the pure pitch-

angle-scattering model, however, parallel momentum con-

servation is violated, leading to spurious friction-driven

FIG. 3. Fluxes (A)–(B), flow (C), and bootstrap current (D) computed for a

scenario of steep pressure gradient near the edge of W7-X. Magenta dotted

line is the ambipolar Er, effectively identical for the three trajectory models.

The ion particle and heat sources in (E)–(F) are normalized by a gyro-Bohm

transport time tgB.
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transport proportional to �. This is why the green curves

have a slope of þ1 for large � in the logarithmic plots of L11

and L12 in Figures 4 and 5, while the blue and red curves

have the slope �1.

A similar difference between the momentum-conserving

and pitch-angle-scattering operators is evident in the parallel

conductivity coefficient L33. The flow that arises in response to

a parallel electric field is determined by the parallel momen-

tum equation b�(43), where the parallel friction force Fka again

vanishes when only a single ion species is considered. Hence

naZaehBEjji ¼ hB � ðr � paÞi ¼ h p? � pkð ÞrkBi: (46)

In the absence of radial gradients, the pressure anisotropy in

the Pfirsch-Schl€uter regime is proportional to the parallel

flow velocity and inversely proportional to the collision fre-

quency.46 The flow hVkBi is therefore proportional to � in

the Pfirsch-Schl€uter regime unless momentum conservation

is violated. In the latter case, the spurious friction force

causes hVkBi to be inversely proportional to �, as can be

seen in Figs. 4 and 5.

When �0 < 1, the resolution required in the h, f, and n
coordinates increases as �0 decreases, due to the boundary

layers that develop in phase space. The highest resolution

used for results presented here, corresponding to the W7-X

calculations at �0 ¼ 10�3, was Nh¼ 29, Nf¼ 83, Nn¼ 180,

and Nx¼ 5, giving a 2 166 302� 2 166 302 linear system.

Here, Nj is the number of grid points or modes in coordinate j.

Each calculation at this resolution with the Fokker-Planck col-

lision operator required �30–50 min to run on 4 nodes of the

Edison computer at NERSC. At higher collisionality, or if

fewer harmonics are retained in B(h, f), lower resolution is

sufficient, so memory and time requirements are reduced; for

example, in the same W7-X geometry at �0 ¼ 10�2, sufficient

resolution parameters for convergence were Nh¼ 11, Nf¼ 64,

Nn¼ 100, and Nx¼ 5, and computations required 3 min on 1

node of Edison. Computations with �0 > 10�2 can typically

be run on a laptop.

When the pure pitch-angle scattering collision operator

and DKES trajectories are chosen, the kinetic equation

solved in SFINCS becomes identical to the one solved in the

DKES code.5,6 In this case, it was verified that the two codes

agreed for all elements of the transport matrix, as demon-

strated in Figure 5. For this figure, the monoenergetic trans-

port coefficients computed by DKES have been integrated

over velocity with the appropriate weights and normalized in

the same way as (40).

In the short-mean-free-path limit �0 
 1, the ion trans-

port and flow can be computed analytically in terms of the

parallel current.46 The transport matrix elements associated

with the Fokker-Planck collision operator may therefore be

extracted from Ref. 46 and are summarized in Appendix B.

Plotted in Figure 6 (dashed and dotted-dashed lines), these

analytic high-collisionality limits agree quite well with the

Fokker-Planck SFINCS computations in the appropriate

�0 
 1 limit.

FIG. 4. The ion transport matrix elements (defined in (40)) are plotted as functions of the collisionality (41) for LHD geometry at Er¼ 0. SFINCS computa-

tions for three different collision operators are compared.
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IX. DISCUSSION AND CONCLUSIONS

In this work, we have examined the impact of sev-

eral approximations made in stellarator kinetic codes,

approximations related to the electric field and the colli-

sion operator. We have compared three versions of the

drift-kinetic equation for a stellarator, consisting of (16)

with the coefficients (17), (18), or (19). These three sets

of expressions for _ra; _xa, and _na may be interpreted as

effective particle trajectories (although we solve each

form of the kinetic equation using continuum numerical

methods). Equations (17) and (19) appear to be more

accurate than (18); and as we have shown in Sec. IV, the

full trajectory model (17) is the only one of the three

models, which gives the correct parallel viscous force and

which preserves intrinsic ambipolarity in quasisymmetry.

However, as we have shown in Sec. III, the kinetic Eq.

(16) with (17) or (19) is not well behaved when Er 6¼ 0,

with one or two unphysical constraints forced upon the

distribution function. This analytic property of the kinetic

equation must be dealt with before attempting to solve

the equation numerically.

To eliminate this problem of unphysical constraints,

we propose formulating the kinetic problem as in (36)

with (27). A particle and heat source are introduced, along

with the additional constraints that all the flux-surface-

averaged density and pressure reside in the leading-order

Maxwellian. For the model (18), the sources always van-

ish. For the model (17), the particle source vanishes for

any Er, and the energy source vanishes when Er takes on

its ambipolar value. Equations (36) have been imple-

mented in a new time-independent continuum code

SFINCS, and the resulting ion transport matrices have

been compared for the geometries of the LHD and W7-X

stellarators. When Er is below roughly one-third of the

resonant value, the three models give nearly indistinguish-

able results. This finding confirms that the incompressi-

ble-E�B trajectory model used in some codes5,6 is quite

accurate in this small-Er regime, which is typically satis-

fied in experiments. Physically, the effect of Er in this re-

gime is to generate a
ffiffiffi
�
p

regime of transport due to

poloidal precession of helically trapped particles, and this

process is retained (at least approximately) in all three tra-

jectory models. Once Er approaches the resonance, how-

ever, the three trajectory models yield substantially

different results. This Er � Eres
r regime can be relevant to

experiments with high ratios Te/Ti (Refs. 23, 45, and 48)

and strong gradients.49 In Figure 3, we find that in the

large-Er region anticipated for the edge of W7-X, the

bootstrap current density in the full trajectory model is

modestly reduced (by 8%) compared to an

incompressible-E�B calculation, but should larger values

FIG. 5. The ion transport matrix elements (defined in (40)) are plotted as functions of the collisionality (41) for W7-X geometry at Er¼ 0. SFINCS compu-

tations for three different collision operators are compared. Also shown (black crosses) are the transport matrix elements computed using the DKES

code,5,6 which uses a pitch-angle scattering collision operator, demonstrating excellent agreement with SFINCS when the latter is run with the same colli-

sion model.
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of E* arise, we expect the deviation could grow more

significant.

Since full coupling in the speed coordinate xa is retained

in our numerical implementation, it is possible to directly

compare results from the full linearized Fokker-Planck colli-

sion operator to results from simpler collision models. At

low collisionality, the ion transport matrix elements L11, L12,

L21, and L22 are nearly identical for the three collision mod-

els considered. This result makes sense physically since

these matrix elements at low collisionality are associated

with a piece of the distribution function that is localized to a

narrow range of pitch angles, so pitch angle diffusion is the

dominant collisional process. However, these same matrix

elements at higher collisionality, or the other matrix ele-

ments at any collisionality, are sensitive to momentum con-

servation. The momentum-conserving model operator results

in the correct scaling with collisionality when compared to

the full linearized Fokker-Planck operator. However, there

are still O(1) differences in the transport coefficients com-

puted with these two collision operators.
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APPENDIX A: QUASISYMMETRY ISOMORPHISM

A useful test of a stellarator neoclassical code such as the

one described here is the quasisymmetry isomorphism, dis-

cussed analytically in Refs. 50–52. Equivalent to the definition

at the end of Sec. IV,33 a quasisymmetric magnetic field is

one satisfying B(h, f)¼ y(Mh – Nf) for some periodic func-

tion y and integers M and N. Magnetic fields with the same y
but different M and N are said to be isomorphic in that the

associated transport matrices must be related in the following

manner. Suppose the transport matrices are computed for sev-

eral quasisymmetric magnetic fields with different values of

M and N, varying the collision frequency in each calculation

FIG. 6. The ion transport matrix elements (defined in (40)) are plotted as functions of the collisionality (41) for LHD and W7-X geometry at Er¼ 0. SFINCS

results shown were computed using the linearized Fokker-Planck collision operator (so the solid curves here are identical to the red curves in Figures 4 and 5.)

Dashed and dotted-dashed lines indicate the analytic high-collisionality limits for Fokker-Planck collisions, discussed in Ref. 46 and in Appendix B, which

agree quite well with the SFINCS computations at high collisionality.
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so �ii=ðiM � NÞ remains fixed, and varying the radial electric

field so ðdU0=dwÞðGM þ INÞ=ðiM � NÞ remains fixed. In

such a scan of M and N, it can be shown analytically50–52 that

the transport matrix elements should vary as follows: L11, L12,

L21, and L22 vary / ðNI þMGÞ2=ðiM � NÞ; L13, L23, L31,

and L32 vary / ðNI þMGÞ=ðiM � NÞ; and L33 varies

/ 1=ðiM � NÞ. This isomorphism holds for all the trajectory

models considered in this paper.

As �ii=ðiM � NÞ is to be held fixed in this test, while

iM � N can change sign as M and N are varied, the collision

frequency to use can be negative. While �ii< 0 does not

make sense physically, it poses no mathematical or numeri-

cal problem. In any stellarator (even a non-quasisymmetric

and/or non-stellarator-symmetric one), if the signs of the col-

lision frequency, n, and dU0/dw are simultaneously reversed

in the kinetic equation, the part of fi1 driven by hEjjBi
remains unchanged, while the part driven by radial gradients

changes sign. Thus, L11, L12, L21, L22, and L33 change sign,

while L13, L23, L31, and L32 remain unchanged. Therefore,

another way to express the quasisymmetry isomorphism

(even for non-stellarator-symmetric y) that preserves �ii> 0

is the following: if M and N are varied holding �ii=jiM � Nj
and ðdU0=dwÞðGM þ INÞ=jiM � Nj fixed, L11, L12, L21, and

L22 should vary / ðNI þMGÞ2=jiM � Nj; L13, L23, L31, and

L32 should vary / ðNI þMGÞ=ðiM � NÞ; and L33 should

vary / 1=jiM � Nj.
It was verified that the SFINCS code obeyed both ver-

sions of these isomorphism transformations for various y,

collisionality regimes, radial electric fields, trajectory mod-

els, and collision operators.

APPENDIX B: ION TRANSPORT MATRIX AT HIGH
COLLISIONALITY

From the analytic calculations presented in Ref. 46, we

can derive expressions for Ljk of Eq. (40) in the Pfirsch-

Schl€uter regime. Note that a pure plasma with singly charged

ions is assumed in Ref. 46, so we specialize to this case of

Z¼ 1 in this appendix. The transport matrix elements depend

on the function u given by the solution to Eq. (8) in Ref. 46;

u is proportional to the parallel current divided by B. All

coefficients but L33 are straightforwardly obtained from Eqs.

(14), (18), and (26) in Ref. 46 for the radial ion heat flux, the

parallel ion flow, and the radial current, respectively, by suit-

able choices of the thermodynamic forces in the right-hand-

side of Eq. (40) and using the symmetry of the transport

matrix. To find the parallel conductivity coefficient L33,

we substitute the pressure anisotropy, given by Eq. (20) in

Ref. 46, into Eq. (46) (of this paper) in the absence of radial

gradients (i.e., when Ejj is the only thermodynamic force

present). Then, L33 can be found from the flow hVkBi.
Expressions for the matrix coefficients in the Pfirsch-

Schl€uter regime are summarized in Eqs. (B1) and (B2).

Three numerical coefficients in the function KSimakov
2 wð Þ

arise from generalized Spitzer problems, which were solved

in Ref. 46 by keeping a small number of Laguerre polyno-

mials in kinetic energy. When these generalized Spitzer

problems are solved keeping more energy polynomials, we

obtain the more accurate coefficients given in K2 below.

L11 ¼ 0:96 � 21=2 � 3
4

Gþ iIð Þ2

i2G2
G1 wð Þ 1

�0
;

L12 ¼ L21 ¼ 0:96 � 21=2 Gþ iIð Þ2

i2G2

3:245 G1 wð Þ þ 0:085 G2 wð Þ½ 	 1

�0
;

L13 ¼ L31 ¼
huB2i

Gi
� hB

2i
Gi

K1 wð Þ;

L22 ¼ 21=2 � 8
5

1

i2G2
B2

0H wð Þ �0;

L23 ¼ L32 ¼
1

iG
5

2
huB2i � 5

2
K1 wð ÞhB2i þ K2 wð ÞhB2i

� �
;

L33 ¼
1

3 � 0:96 � 21=2

1

Gþ iIð Þ2
hB2i2

h rkB
� �2i

�0; (B1)

G1 wð Þ ¼
h rklnB
� �

rk uB2ð Þi2

h rkB
� �2i

�
	 rk uB2ð Þ

B

� �2

;

G2 wð Þ ¼ hu rklnB
� �

rk uB2ð Þi

�
h rklnB
� �

rk uB2ð Þihu rkB
� �2i

h rkB
� �2i

;

K1 wð Þ ¼
h rklnB
� �

rk uB2ð Þi
2h rkB
� �2i

;

K2 wð Þ ¼ 1:97213
huB2i
hB2i � 1:03287 � 2K1 wð Þ

þ 0:09361
hu rkB
� �2i
h rkB
� �2i

;

KSimakov
2 wð Þ ¼ 1:77

huB2i
hB2i � 0:91 � 2K1 wð Þ

þ 0:05
hu rkB
� �2i
h rkB
� �2i

;

H wð Þ ¼ huB2i2

hB2i � hu
2B2i: (B2)
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