12 research outputs found

    Elucidating the role of post-translational modifications of alpha-synuclein using semisynthesis:phosphorylation at Tyrosine 125 and monoubiquitination at Lysine 6

    Get PDF
    Alpha-synuclein (α-syn) is a natively unfolded protein that is closely linked to Parkinson’s disease (PD) by genetic, neuropathologic and biochemical evidence. Aggregated and fibrillar forms of α-syn are the main components of intracellular protein inclusions found in PD patients’ brains, termed Lewy Bodies (LB). Both in animal models and in vitro, α-syn forms fibrillar aggregates that resemble those observed in PD brain tissues. Although disease-associated mutations have been shown to promote the fibrillization of α-syn, the exact mechanisms responsible for triggering α-syn aggregation and toxicity in sporadic PD remain unknown. Addressing this gap of knowledge is crucial for understanding the molecular basis of the disease and developing effective therapies for the treatment of PD and other synucleinopathies. This project was initiated on the basis of the working hypothesis that post-translational modifications (PTM) may play important roles in modulating α-syn function and/or regulating its aggregation and toxicity. More specifically, α-syn is ubiquitously N-terminally acetylated, and phosphorylated (serines 87 and S129), ubiquitinated (lysines 12, 21 and 23) and truncated forms of α-syn have been observed in association with wild-type α-syn in LB and in brain tissues from PD patients and transgenic animals. Other modifications, such as phosphorylation at tyrosine 125 (Y125), were significantly reduced in diseased brains. Despite the discovery of candidate enzymes that mediate α-syn phosphorylation, ubiquitination and truncation, little is known about how each of these modifications alters α-syn structure, function, aggregation and toxicity in vivo. This is primarily due to the lack of tools that allow site-specific introduction of these modifications and the lack of natural mutations that can mimic the effect of these modifications, including phosphorylation. The primary focus of this thesis was to develop strategies to overcome these limitations so as to elucidate the effect of phosphorylation at Y125 and monoubiquitination at lysine 6 (K6) on α-syn structure, fibril formation, membrane binding and subcellular localization. Towards this goal, we developed two semisynthetic strategies that allow site-specific introduction of PTM in α-syn based on the ligation of synthetic peptides containing the desired modified amino acid with recombinantly expressed proteins using Expressed Protein Ligation. This approach enables the introduction of single or multiple PTM in the N- or C-terminal regions of α-syn, and the preparation of modified α-syn in milligram quantities. Using these approaches, we were able to show for the first time that ubiquitination stabilizes the monomeric form of the protein and inhibits, rather than promotes, α-syn aggregation, while phosphorylation at Y125 does not significantly change the structure and aggregation propensity of α-syn. With the semisynthetic pY125 α-syn in our hands, we were also able to investigate for the first time the sub-cellular localization of pY125 α-syn through its microinjection into primary neurons. This was not previously possible due to technical limitations related to the absence of appropriate antibodies against pY125 α-syn for immunocytochemical studies and difficulties in generating sitespecifically modified α-syn. Furthermore, we were able to investigate the effect of α-syn phosphorylation on its interactions with other proteins, by probing the effect of pS129 and pY125 on the binding to a nanobody that was specifically selected by phage-display to tightly bind to the C-terminal domain of α-syn. Accordingly, we demonstrated that phosphorylation at a single residue is capable of disrupting the binding of full-length α-syn to another protein. These results have wide-ranging implications for the potential role of phosphorylation and other PTM in regulating α-syn’s function(s). We also exploited our ability to combine semisynthetic and enzymatic approaches to investigate potential cross-talk between different PTM, namely phosphorylation at Y125 and S129 and monoubiquitination at K6. These advances would eventually allow investigating the effect of cross-talk between other N and C-terminal modifications on α-syn’s properties and to investigate PTM-dependent protein-protein and protein-ligand interactions in vitro and in cellular models of synucleinopathies. Together, our semisynthetic approaches provide novel means for the introduction of site-specific modifications in the N- and C-termini of α-syn. Current efforts in our laboratory are focused on extending these approaches to investigate the dynamics of PTM through the use of photocaged modified amino acids and to prepare novel fluorescently labeled α-syn variants to investigate its folding at the single-molecule level in living cells. The results presented in this thesis and preliminary studies from our group demonstrate that semisynthetic α-syn can provide unique opportunities to investigate structure-function of α-syn and the role of PTM in the biology of α-syn in health and disease

    Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity

    Get PDF
    It has been more than a century since the first evidence linking the process of amyloid formation to the pathogenesis of Alzheimer's disease. During the last three decades in particular, increasing evidence from various sources (pathology, genetics, cell culture studies, biochemistry, and biophysics) continues to point to a central role for the pathogenesis of several incurable neurodegenerative and systemic diseases. This is in part driven by our improved understanding of the molecular mechanisms of protein misfolding and aggregation and the structural properties of the different aggregates in the amyloid pathway and the emergence of new tools and experimental approaches that permit better characterization of amyloid formation in vivo. Despite these advances, detailed mechanistic understanding of protein aggregation and amyloid formation in vitro and in vivo presents several challenges that remain to be addressed and several fundamental questions about the molecular and structural determinants of amyloid formation and toxicity and the mechanisms of amyloid-induced toxicity remain unanswered. To address this knowledge gap and technical challenges, there is a critical need for developing novel tools and experimental approaches that will not only permit the detection and monitoring of molecular events that underlie this process but also allow for the manipulation of these events in a spatial and temporal fashion both in and out of the cell. This review is primarily dedicated in highlighting recent results that illustrate how advances in chemistry and chemical biology have been and can be used to address some of the questions and technical challenges mentioned above. We believe that combining recent advances in the development of new fluorescent probes, imaging tools that enabled the visualization and tracking of molecular events with advances in organic synthesis, and novel approaches for protein synthesis and engineering provide unique opportunities to gain a molecular-level understanding of the process of amyloid formation. We hope that this review will stimulate further research in this area and catalyze increased collaboration at the interface of chemistry and biology to decipher the mechanisms and roles of protein folding, misfolding, and aggregation in health and disease

    Synthetic polyubiquitinated α-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology

    Get PDF
    Ubiquitination regulates, via different modes of modifications, a variety of biological processes, and aberrations in the process have been implicated in the pathogenesis of several neurodegenerative diseases. However, our ability to dissect the pathophysiological relevance of the ubiquitination code has been hampered due to the lack of methods that allow site-specific introduction of ubiquitin (Ub) chains to a specific substrate. Here, we describe chemical and semisynthetic strategies for site-specific incorporation of K48-linked di- or tetra-Ub chains onto the side chain of Lys12 of α-Synuclein (α-Syn). These advances provided unique opportunities to elucidate the role of ubiquitination and Ub chain length in regulating α-Syn stability, aggregation, phosphorylation, and clearance. In addition, we investigated the cross-talk between phosphorylation and ubiquitination, the two most common α-Syn pathological modifications identified within Lewy bodies and Parkinson disease. Our results suggest that α-Syn functions under complex regulatory mechanisms involving cross-talk among different posttranslational modifications

    The Size of the Proteasomal Substrate Determines Whether Its Degradation Will Be Mediated by Mono- or Polyubiquitylation

    Get PDF
    A polyubiquitin chain anchored to the substrate has been the hallmark of proteasomal recognition. However, the degradation signal appears to be more complex and to contain also a substrate's unstructured region. Recent reports have shown that the proteasome can degrade also monoubiquitylated proteins, which adds an additional layer of complexity to the signal. Here, we demonstrate that the size of the substrate is an important determinant in its extent of ubiquitylation: a single ubiquitin moiety fused to a tail of up to ∼150 residues derived from either short artificial repeats or from naturally occurring proteins, is sufficient to target them for proteasomal degradation. Importantly, chemically synthesized adducts, where ubiquitin is attached to the substrate via a naturally occurring isopeptide bond, display similar characteristics. Taken together, these findings suggest that the ubiquitin proteasomal signal is adaptive, and is not always made of a long polyubiquitin chain

    Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125

    Get PDF
    Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodologies for the site-specific introduction of PTMs in α-syn. More specifically, the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which in some cases can be mimicked by serine/threonine → glutamate or aspartate substitutions, there are no natural amino acids that can mimic phospho-tyrosine. To address these challenges, we developed a general and efficient semisynthetic strategy that enables the site-specific introduction of single or multiple PTMs and the preparation of homogeneously C-terminal modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, membrane binding, and subcellular localization of α-syn. The development of semisynthetic methods for the site-specific introduction of single or PTMs represents an important advance toward determining the roles of such modifications in α-syn structure, aggregation, and functions in heath and disease

    Exploring the role of post-translational modifications in regulating α-synuclein interactions by studying the effects of phosphorylation on nanobody binding.

    No full text
    Intracellular deposits of α-synuclein in the form of Lewy bodies are major hallmarks of Parkinson's disease (PD) and a range of related neurodegenerative disorders. Post-translational modifications (PTMs) of α-synuclein are increasingly thought to be major modulators of its structure, function, degradation and toxicity. Among these PTMs, phosphorylation near the C-terminus at S129 has emerged as a dominant pathogenic modification as it is consistently observed to occur within the brain and cerebrospinal fluid (CSF) of post-mortem PD patients, and its level appears to correlate with disease progression. Phosphorylation at the neighboring tyrosine residue Y125 has also been shown to protect against α-synuclein toxicity in a Drosophila model of PD. In the present study we address the potential roles of C-terminal phosphorylation in modulating the interaction of α-synuclein with other protein partners, using a single domain antibody fragment (NbSyn87) that binds to the C-terminal region of α-synuclein with nanomolar affinity. The results reveal that phosphorylation at S129 has negligible effect on the binding affinity of NbSyn87 to α-synuclein while phosphorylation at Y125, only four residues away, decreases the binding affinity by a factor of 400. These findings show that, despite the fact that α-synuclein is intrinsically disordered in solution, selective phosphorylation can modulate significantly its interactions with other molecules and suggest how this particular form of modification could play a key role in regulating the normal and aberrant function of α-synuclein

    Elucidating the Role of C-Terminal Post-Translational Modifications Using Protein Semisynthesis Strategies: α-Synuclein Phosphorylation at Tyrosine 125

    No full text
    Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodologies for the site-specific introduction of PTMs in α-syn. More specifically, the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which in some cases can be mimicked by serine/threonine → glutamate or aspartate substitutions, there are no natural amino acids that can mimic phospho-tyrosine. To address these challenges, we developed a general and efficient semisynthetic strategy that enables the site-specific introduction of single or multiple PTMs and the preparation of homogeneously C-terminal modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, membrane binding, and subcellular localization of α-syn. The development of semisynthetic methods for the site-specific introduction of single or PTMs represents an important advance toward determining the roles of such modifications in α-syn structure, aggregation, and functions in heath and disease
    corecore