10,799 research outputs found

    A Shotgun Model for Gamma Ray Bursts

    Get PDF
    We propose that gamma ray bursts (GRBs) are produced by a shower of heavy blobs running into circumstellar material at highly relativistic speeds. The gamma ray emission is produced in the shocks these bullets drive into the surrounding medium. The short term variability seen in GRBs is set by the slowing-down time of the bullets while the overall duration of the burst is set by the lifetime of the central engine. A requirement of this model is that the ambient medium be dense, consistent with a strong stellar wind. The efficiency of the burst can be relatively high.Comment: 4 pages, 2 figures, revised version accepted by ApJ Letter

    Modulation of neural cell membrane conductance by the herbal anxiolytic and antiepileptic drug aswal

    Get PDF
    To evaluate the effects of aswal on ionic fluxes and neuronal excitation, we performed extracellular and whole cell patch clamp recordings on CA1 pyramidal neurons of guinea pigs and Long-Evans rats. Aswal (100-250 mg/l) was administered systemically, and its effects on the rate of synchronized extracellular field potentials (EFP), membrane parameters, action potentials and postsynaptic potentials were recorded. The extracellular results obtained are consistent with calcium antagonistic properties. Intracellular recordings suggest that a direct sodium antagonistic effect as seen in many antiepileptic drugs plays no significant role. Further effects on ligand gated ion channels are discussed controversially. In summary, the cellular action of aswal appears heterogeneous with calcium antagonism playing a prominent role in counteracting excitation which may be a common feature in epilepsy and different psychiatric conditions as mood and anxiety disorder. Copyright (C) 2000 S. Karger AG, Basel

    Hadron production from quark coalescence and jet fragmentation in intermediate energy collisions at RHIC

    Get PDF
    Transverse momentum spectra of pions, protons and antiprotons in Au+Au collisions at intermediate RHIC energy of sNN=62\sqrt{s_{NN}}=62 GeV are studied in a model that includes both quark coalescence from the dense partonic matter and fragmentation of the quenched perturbative minijet partons. The resulting baryon to meson ratio at intermediate transverse momenta is predicted to be larger than that seen in experiments at higher center of mass energies.Comment: 6 pages, 2 figures. Figures replaced to differentially address the high-pT behavior of baryon versus antibaryon to meson ratio

    Differential treatment of bipolar disorder with old and new antiepileptic drugs

    Get PDF
    Although lithium remains the preferred medication for bipolar disorders, new investigations suggest that only 60 to 80% of patients have a good response with a classical presentation. The antiepileptics carbamazepine and valproate are important alternatives. Several studies have shown that lithium, carbamazepine and valproate are effective in pure mania. Mixed mania and rapid cycling respond, however, well to valproate. One disadvantage of carbamazepine is its enzyme inducing property with the consequence of a decrease of plasma levels of other psychotropic medications and a worsening of psychopathology. First data indicate a good antimanic and antidepressive efficacy of the new antiepileptic drug lamotrigine

    Chronic Progressive External Ophthalmoplegia Is Associated with a Novel Mutation in the Mitochondrial tRNA(Asn) Gene

    Get PDF
    Chronic progressive external ophthalmoplegia (CPEO) is caused by a decreased oxidative phosphorylation (OXPHOS) activity due to large-scale deletions of the mitochondrial genome in 50 % of the patients. The deletions encompass structural OXPHOS genes as well as tRNA genes, required for their expression so that the pathogenesis could be due to the deleted OXPHOS subunits or to an impaired mitochondrial translation. We have analyzed the mitochondrial genome of a patient presenting with CPEO for single base substitutions and discovered a novel heteroplasmic mutation in the tRNAAsn gene at position 5692 that converts a highly conserved adenine into a guanine. This mutation is unique because it is located at the transition of the anticodon loop to the anticodon stem and it leads to an additional base pair, thus reducing the number of loop-forming nucleotides from seven to five. Our findings suggest that CPEO can be caused by a single base substition in a mitochondrial tRNA gene so that the mitochondrial protein synthesis becomes the rate limiting step in OXPHOS fidelity

    Fast Equilibration of Hadrons in an Expanding Fireball

    Full text link
    Due to long chemical equilibration times within standard hadronic reactions during the hadron gas phase in relativistic heavy ion collisions it has been suggested that the hadrons are "born" into equilibrium after the quark gluon plasma phase. Here we develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of baryon anti-baryon pairs (as well as kaon anti-kaon pairs) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the kaons and baryons as well as the bath of pions and Hagedorn resonances can indeed quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Moreover, a comparison of our results to (B+Bˉ)/π+(B+\bar{B})/\pi^{+} and K/π+K/\pi^{+} ratios at RHIC, indeed, shows a close match.Comment: 4 pages, 5 figure

    High-j single-particle neutron states outside the N=82 core

    Get PDF
    The behaviour of the i13/2 and h9/2 single-neutron strength was studied with the (4He,3He) reaction on 138Ba, 140Ce, 142Nd and 144Sm targets at a beam energy of 51 MeV. The separation between the single-neutron states i13/2 and h9/2 was measured in N =83 nuclei with changing proton number. To this end spectroscopic factors for states populated in high-l transfer were extracted from the data. Some mixing of l=5 and 6 strength was observed with states that are formed by coupling the f7/2 state to the 2+ and 3- vibrational states and the mixing matrix elements were found to be remarkably constant. The centroids of the strength indicate a systematic change in the energies of the i13/2 and h9/2 single-neutron states with increasing proton number that is in quantitative agreement with the effects expected from the tensor interaction.Comment: 12 pages of text, 3 diagram

    Rapidity Dependence of Strange Particle Ratios in Nuclear Collisions

    Get PDF
    It was recently found that in sulphur-induced nuclear collisions at 200 A GeV the observed strange hadron abundances can be explained within a thermodynamic model where baryons and mesons separately are in a state of relative chemical equilibrium, with overall strangeness being slightly undersaturated, but distributed among the strange hadron channels according to relative chemical equilibrium with a vanishing strange quark chemical potential. We develop a consistent thermodynamic formulation of the concept of relative chemical equilibrium and show how to introduce into the partition function deviations from absolute chemical equilibrium, e.~g.~an undersaturation of overall strangeness or the breaking of chemical equilibrium between mesons and baryons. We then proceed to test on the available data the hypothesis that the strange quark chemical potential vanishes everywhere, and that the rapidity distributions of all the observed hadrons can be explained in terms of one common, rapidity-dependent function Όq(η)\mu_{\rm q}(\eta) for the baryon chemical potential only. The aim of this study is to shed light on the observed strong rapidity dependence of the strange baryon ratios in the NA36 experiment.Comment: uses REVTeX, 14 pages, 17 ps-figures (uuencoded) added with figures comman

    X-ray and Radio Monitoring of GX 339-4 and Cyg X-1

    Full text link
    Previous work by Motch et al. (1985) suggested that in the low/hard state of GX339-4, the soft X-ray power-law extrapolated backward in energy agrees with the IR flux level. Corbel and Fender (2002) later showed that the typical hard state radio power-law extrapolated forward in energy meets the backward extrapolated X-ray power-law at an IR spectral break, which was explicitly observed twice in GX339-4. This has been cited as further evidence that jet synchrotron radiation might make a significant contribution to the observed X-rays in the hard state. We explore this hypothesis with a series of simultaneous radio/X-ray hard state observations of GX339-4. We fit these spectra with a simple, but remarkably successful, doubly broken power-law model that indeed requires a spectral break in the IR. For most of these observations, the break position as a function of X-ray flux agrees with the jet model predictions. We then examine the radio flux/X-ray flux correlation in Cyg X-1 through the use of 15 GHz radio data, obtained with the Ryle radio telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and pointed observations. We find evidence of `parallel tracks' in the radio/X-ray correlation which are associated with `failed transitions' to, or the beginning of a transition to, the soft state. We also find that for Cyg X-1 the radio flux is more fundamentally correlated with the hard, rather than the soft, X-ray flux.Comment: To Appear in the Proceedings of "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" (Amsterdam, July 2004). Eds. T Maccarone, R. Fender, L. H

    Metamagnetic phase transition of the antiferromagnetic Heisenberg icosahedron

    Full text link
    The observation of hysteresis effects in single molecule magnets like Mn12_{12}-acetate has initiated ideas of future applications in storage technology. The appearance of a hysteresis loop in such compounds is an outcome of their magnetic anisotropy. In this Letter we report that magnetic hysteresis occurs in a spin system without any anisotropy, specifically, where spins mounted on the vertices of an icosahedron are coupled by antiferromagnetic isotropic nearest-neighbor Heisenberg interaction giving rise to geometric frustration. At T=0 this system undergoes a first order metamagnetic phase transition at a critical field \Bcrit between two distinct families of ground state configurations. The metastable phase of the system is characterized by a temperature and field dependent survival probability distribution.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
    • 

    corecore