Due to long chemical equilibration times within standard hadronic reactions
during the hadron gas phase in relativistic heavy ion collisions it has been
suggested that the hadrons are "born" into equilibrium after the quark gluon
plasma phase. Here we develop a dynamical scheme in which possible Hagedorn
states contribute to fast chemical equilibration times of baryon anti-baryon
pairs (as well as kaon anti-kaon pairs) inside a hadron gas and just below the
critical temperature. Within this scheme, we use master equations and derive
various analytical estimates for the chemical equilibration times. Applying a
Bjorken picture to the expanding fireball, the kaons and baryons as well as the
bath of pions and Hagedorn resonances can indeed quickly chemically equilibrate
for both an initial overpopulation or underpopulation of Hagedorn resonances.
Moreover, a comparison of our results to (B+Bˉ)/π+ and K/π+
ratios at RHIC, indeed, shows a close match.Comment: 4 pages, 5 figure