196 research outputs found

    Specific heat of the ideal gas obeying the generalized exclusion statistics

    Full text link
    We calculate the specific heat of the ideal gas obeying the generalized exclusion statistics (GES) in the continuum model and the tight binding model numerically. In the continuum model of 3-d space, the specific heat increases with statistical parameter at low temperature whereas it decreases with statistical parameter at high temperature. We find that the critical temperature normalized by ÎĽf\mu_f (Fermi energy) is 0.290. The specific heat of 2-d space was known to be independent of gg in the continuum model, but it varies with gg drastically in the tight-binding model. From its unique behavior, identification of GES particles will be possible from the specific heat.Comment: 14 pages, 9 figures, to be published in Eur. Phys. J. B, References and figures added, typos corrected, one section removed and two sections merge

    Non-radial oscillations of anisotropic neutron stars in the Cowling approximation

    Full text link
    One of the most common assumptions in the study of neutron star models and their oscillations is that the pressure is isotopic, however there are arguments that this may not be correct. Thus in the present paper we make a first step towards studying the nonradial oscillations of neutron stars with an anisotropic pressure. We adopt the so-called Cowling approximation where the spacetime metric is kept fixed and the oscillation spectrum for the first few fluid modes is obtained. The effect of the anisotropy on the frequencies is apparent, although with the present results it might be hard to distinguish it from the changes in the frequencies caused by different equations of state.Comment: 17 pages, 8 figures; title changed, comments adde

    Direct simulations of helical Hall-MHD turbulence and dynamo action

    Get PDF
    Direct numerical simulations of turbulent Hall dynamos are presented. The evolution of an initially weak and small scale magnetic field in a system maintained in a stationary turbulent regime by a stirring force at a macroscopic scale is studied to explore the conditions for exponential growth of the magnetic energy. Scaling of the dynamo efficiency with the Reynolds numbers is studied, and the resulting total energy spectra are found to be compatible with a Kolmogorov type law. A faster growth of large scale magnetic fields is observed at intermediate intensities of the Hall effect.Comment: 13 pages, 17 figures, ApJ (in press

    Bounds on the basic physical parameters for anisotropic compact general relativistic objects

    Get PDF
    We derive upper and lower limits for the basic physical parameters (mass-radius ratio, anisotropy, redshift and total energy) for arbitrary anisotropic general relativistic matter distributions in the presence of a cosmological constant. The values of these quantities are strongly dependent on the value of the anisotropy parameter (the difference between the tangential and radial pressure) at the surface of the star. In the presence of the cosmological constant, a minimum mass configuration with given anisotropy does exist. Anisotropic compact stellar type objects can be much more compact than the isotropic ones, and their radii may be close to their corresponding Schwarzschild radii. Upper bounds for the anisotropy parameter are also obtained from the analysis of the curvature invariants. General restrictions for the redshift and the total energy (including the gravitational contribution) for anisotropic stars are obtained in terms of the anisotropy parameter. Values of the surface redshift parameter greater than two could be the main observational signature for anisotropic stellar type objects.Comment: 18 pages, no figures, accepted for publication in CQ

    Sound Speeds, Cracking and Stability of Self-Gravitating Anisotropic Compact Objects

    Full text link
    Using the the concept of cracking we explore the influence of density fluctuations and local anisotropy have on the stability of local and non-local anisotropic matter configurations in general relativity. This concept, conceived to describe the behaviour of a fluid distribution just after its departure from equilibrium, provides an alternative approach to consider the stability of selfgravitating compact objects. We show that potentially unstable regions within a configuration can be identify as a function of the difference of propagations of sound along tangential and radial directions. In fact, it is found that these regions could occur when, at particular point within the distribution, the tangential speed of sound is greater than radial one.Comment: 17 pages, 8 figures, 4 new references added. typos correcte

    The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications

    Full text link
    We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.Comment: Appears in Gravitational Wave Astrophysics, Editor C.F. Sopuerta, Astrophysics and Space Science Proceedings, Volume 40. ISBN 978-3-319-10487-4. Springer International Publishing Switzerland, 2015, p. 30

    Numerical Solutions of ideal two-fluid equations very closed to the event horizon of Schwarzschild black hole

    Full text link
    The 3+1 formalism of Thorne, Price and Macdonald has been used to derive the linear two-fluid equations describing transverse and longitudinal waves propagating in the two-fluid ideal collisionless plasmas surrounding a Schwarzschild black hole. The plasma is assumed to be falling in radial direction toward the event horizon. The relativistic two-fluid equations have been reformulate, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon. Here a WKB approximation is used to derive the local dispersion relation for these waves and solved numerically for the wave number k.Comment: 16 pages, 15 figures. arXiv admin note: text overlap with arXiv:0902.3766, arXiv:0807.459

    Semi-Analytic Stellar Structure in Scalar-Tensor Gravity

    Full text link
    Precision tests of gravity can be used to constrain the properties of hypothetical very light scalar fields, but these tests depend crucially on how macroscopic astrophysical objects couple to the new scalar field. We develop quasi-analytic methods for solving the equations of stellar structure using scalar-tensor gravity, with the goal of seeing how stellar properties depend on assumptions made about the scalar coupling at a microscopic level. We illustrate these methods by applying them to Brans-Dicke scalars, and their generalization in which the scalar-matter coupling is a weak function of the scalar field. The four observable parameters that characterize the fields external to a spherically symmetric star (the stellar radius, R, mass, M, scalar `charge', Q, and the scalar's asymptotic value, phi_infty) are subject to two relations because of the matching to the interior solution, generalizing the usual mass-radius, M(R), relation of General Relativity. We identify how these relations depend on the microscopic scalar couplings, agreeing with earlier workers when comparisons are possible. Explicit analytical solutions are obtained for the instructive toy model of constant-density stars, whose properties we compare to more realistic equations of state for neutron star models.Comment: 39 pages, 9 figure

    Radial stability analysis of the continuous pressure gravastar

    Full text link
    Radial stability of the continuous pressure gravastar is studied using the conventional Chandrasekhar method. The equation of state for the static gravastar solutions is derived and Einstein equations for small perturbations around the equilibrium are solved as an eigenvalue problem for radial pulsations. Within the model there exist a set of parameters leading to a stable fundamental mode, thus proving radial stability of the continuous pressure gravastar. It is also shown that the central energy density possesses an extremum in rho_c(R) curve which represents a splitting point between stable and unstable gravastar configurations. As such the rho_c(R) curve for the gravastar mimics the famous M(R) curve for a polytrope. Together with the former axial stability calculations this work completes the stability problem of the continuous pressure gravastar.Comment: 17 pages, 5 figures, References corrected, minor changes wrt v1, matches published versio
    • …
    corecore