189 research outputs found

    Extreme reversed sexual dichromatism in a bird without sex role reversal

    Full text link
    Brilliant plumage is typical of male birds, reflecting differential enhancement of male traits when females are the limiting sex. Brighter females are thought to evolve exclusively in response to sex role reversal. The striking reversed plumage dichromatism of Eclectus roratus parrots does not fit this pattern. We quantify plumage color in this species and show that very different selection pressures are acting on males and females. Male plumage reflects a compromise between the conflicting requirements for camouflage from predators while foraging and conspicuousness during display. Females are liberated from the need for camouflage but compete for rare nest hollows

    Personality predicts the propensity for social learning in a wild primate

    Get PDF
    Social learning can play a critical role in the reproduction and survival of social animals. Individual differences in the propensity for social learning are therefore likely to have important fitness consequences. We asked whether personality might underpin such individual variation in a wild population of chacma baboons (Papio ursinus). We used two field experiments in which individuals had the opportunity to learn how to solve a task from an experienced conspecific demonstrator: exploitation of a novel food and a hidden item of known food. We investigated whether the (1) time spent watching a demonstrator and (2) changes in task-solving behaviour after watching a demonstrator were related to personality. We found that both boldness and anxiety influenced individual performance in social learning. Specifically, bolder and more anxious animals were more likely to show a greater improvement in task solving after watching a demonstrator. In addition, there was also evidence that the acquisition of social information was not always correlated with its use. These findings present new insights into the costs and benefits of different personality types, and have important implications for the evolution of social learning

    Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot

    Get PDF
    Sex‐biased mortality can lead to altered adult sex ratios (ASRs), which may in turn lead to harassment and lower fitness of the rarer sex and changes in the mating system. Female critically endangered swift parrots (Lathamus discolor) suffer high predation while nesting due to an introduced mammalian predator, the sugar glider (Petaurus breviceps). High predation on females is causing severe population decline alongside strongly biased adult sex ratios (≥73% male). Our 6‐year study showed that 50.5% of critically endangered swift parrot nests had shared paternity although the birds remained socially monogamous. Shared paternity increased significantly with the local rate of predation on breeding females, suggesting that rates of shared paternity increased when the ASR became more biased. Nests that were not predated produced fewer fledglings as the local ASR became more male‐biased possibly due to higher interference during nesting from unpaired males. Population viability analyses showed that part of the predicted decline in the swift parrot population is due to reduced reproductive success when paternity is shared. The models predicted that the population would decline by 89.4% over three generations if the birds maintained the lowest observed rate of shared paternity. This compares with predicted population reductions of 92.1–94.9% under higher rates of shared paternity. We conclude that biases in the ASR, in this case caused by sex‐specific predation from an introduced predator, can lead to changes in the mating system and negative impacts on both individual fitness and long‐term population viability.This research was funded by an Australian Research Council Discovery Grant (DP140104202)

    The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems

    Get PDF
    The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine-resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine-resolution data). The occupancy models produced significantly (P < 0.001) smaller (up to an order of magnitude) and more spatially discrete estimates of the total occupied area than climate-based models. The spatial location and extent of the total area occupied with the occupancy models was highly variable between years (131 and 1498 km2 ). Estimates accounting for the area of functional habitats were significantly smaller (2-58% [SD 16]) than estimates based only on the total area occupied. An increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists

    Will Wallace's Line save Australia from avian influenza?

    No full text
    Australia is separated from the Asian faunal realm by Wallace’s Line, across which there is relatively little avian migration. Although this does diminish the risk of high pathogenicity avian influenza of Asian origin arriving with migratory birds, the barrier is not complete. Migratory shorebirds, as well as a few landbirds, move through the region on annual migrations to and from Southeast Asia and destinations further north, although the frequency of infection of avian influenza in these groups is low. Nonetheless, high pathogenicity H5N1 has recently been recorded on the island of New Guinea in West Papua in domestic poultry. This event increases interest in the movements of birds between Wallacea in eastern Indonesia, New Guinea, and Australia, particularly by waterbirds. There are frequent but irregular movements of ducks, geese, and other waterbirds across Torres Strait between New Guinea and Australia, including movements to regions in which H5N1 has occurred in the recent past. Although the likelihood of avian influenza entering Australia via an avian vector is presumed to be low, the nature and extent of bird movements in this region is poorly known. There have been five recorded outbreaks of high pathogenicity avian influenza in Australian poultry flocks, all of the H7 subtype. To date, Australia is the only inhabited continent not to have recorded high pathogenicity avian influenza since 1997, and H5N1 has never been recorded. The ability to map risk from high pathogenicity avian influenza to Australia is hampered by the lack of quantitative data on the extent of bird movements between Australia and its northern neighbors. Recently developed techniques offer the promise to fill this knowledge gap

    Comparison of three techniques for genetic estimation ofeffective population size in a critically endangered parrot

    Get PDF
    Understanding the current population size of small, spatially aggregating populations of species is essential for their conservation. Reliable estimates of the effective population size (Ne) can be used to provide an early warning for conservation managers of the risks to genetic viability of small populations. Critically endangered, migratory swift parrots Lathamus discolor exist in a single panmictic population in Australia. In their Tasmanian breeding range, they are at severe risk of predation by introduced sugar gliders, exacerbated by deforestation. We used three genetic approaches to estimate Ne using DNA samples genotyped by microsatellite markers and existing life-history data of swift parrots. Based on all samples, we revealed small contemporary Ne estimates across methods (range: 44-140), supporting the need to urgently address threatening processes. Using the 0.5 Ne/N ratio calculated from demographic data suggests that the minimum potential contemporary population size is below 300 individual swift parrots. This is considerably lower than the published estimates derived from expert elicitation, and accords with modeled estimates of extinction risk in this species. Our study has important implications for other threatened species with unknown population sizes and demonstrates that by utilizing available genetic data, reasonable estimates of Ne can be derived.This work was funded by the Loro Parque Fundaci on, theAustralian Research Council (DP140104202), and a crowd-funding campaign“The parrot, the possum and the parda-lote”. This research also received support from theAustralian Government’s National Environmental ScienceProgram through the Threatened Species Recovery Hub, andfrom Australia Awards through the Endeavour Scholarshipsand Fellowships (ERF-PDR-6086-2017

    Concept 3

    Get PDF
    Concept III, the publication of Syracuse University School of Architecture of 1964, is devoted to the subject which occupies most of the time and hopefully much of the thought of its students: architectural education

    Tool-assisted rhythmic drumming in palm cockatoos shares key elements of human instrumental music

    Full text link
    All human societies have music with a rhythmic &ldquo;beat,&rdquo; typically produced with percussive instruments such as drums. The set of capacities that allows humans to produce and perceive music appears to be deeply rooted in human biology, but an understanding of its evolutionary origins requires cross-taxa comparisons. We show that drumming by palm cockatoos (Probosciger aterrimus) shares the key rudiments of human instrumental music, including manufacture of a sound tool, performance in a consistent context, regular beat production, repeated components, and individual styles. Over 131 drumming sequences produced by 18 males, the beats occurred at nonrandom, regular intervals, yet individual males differed significantly in the shape parameters describing the distribution of their beat patterns, indicating individual drumming styles. Autocorrelation analyses of the longest drumming sequences further showed that they were highly regular and predictable like human music. These discoveries provide a rare comparative perspective on the evolution of rhythmicity and instrumental music in our own species, and show that a preference for a regular beat can have other origins before being co-opted into group-based music and dance

    Stochastic population models hindcast population trajectory and breeding history of an endangered parrot

    Get PDF
    Understanding the population dynamics of endangered species is crucial to their conservation. Stochastic population models can be used to explore factors involved in population change, contributing to the understanding of a species’ population dynamics. Norfolk Island Green Parrots Cyanoramphus cookii have undergone significant population fluctuations in the last 50 years. Since 2013, most nestlings hatched in managed, predator-proofed nest sites have been individually marked. These nests have been considered the primary source of population growth. Yet, in 2021, most adult birds were unmarked, raising the question of whether unmarked parrots have been entering the population through undetected breeding in natural nests, and to what extent. We modelled Green Parrot population growth between 2013 and 2021 using stochastic population models in VORTEX to explore the potential dynamics involved in the observed population growth. Basic models involving breeding only in managed nests produced population estimates between 158 and 266, whereas more complex models that included breeding in unmanaged nests, and accounted for the large proportion of unmarked birds, produced population estimates between 360 and 1,041. We conclude that natural nests may have played a significant role in the population growth since 2013. If this is the case, broad-scale predator control may be largely responsible. Furthermore, our study shows how population models may be used to infer underlying demographic processes and inform conservation strategies, even in instances of data scarcity. Our method can be applied to other threatened species, and may prove particularly useful for small populations whose population dynamics remain unclear

    Genetic diversity and inbreeding in an endangered island-dwelling parrot population following repeated population bottlenecks

    Get PDF
    Genetic diversity and population structure can have important implications for the management of threatened species. This is particularly true for small, isolated populations that have experienced significant declines or population bottlenecks. The Norfolk Island green parrot Cyanoramphus cookii is an endangered species at risk of inbreeding and loss of genetic diversity due to its restricted range and the population bottlenecks experienced in recent decades. To assess the severity of inbreeding and loss of genetic diversity in the population we analyzed single nucleotide polymorphisms (SNPs) for 157 unique genetic samples collected from nestlings and randomly captured adult birds between 2015 and 2022. We also assessed the population for genetic structure, calculated sex ratios, and looked for evidence of past population bottlenecks. Our analysis revealed that 17.83% of individuals sampled were highly inbred (F > 0.125), although expected heterozygosity (HE) did not significantly differ from observed heterozygosity (HO) and the average inbreeding coefficient was low. The estimated effective population size (Ne) was 43.8 and we found no evidence of genetic structure. Demographic simulations provided support for scenarios including multiple population bottlenecks, when compared to those with a single population bottleneck or no past bottlenecks. We discuss the implications of our findings for the future management of the species including any potential attempt to establish an insurance population via translocation. Our study highlights the importance of considering population genetics when determining appropriate management actions for threatened species and the need to assess non-model species on an individual basis
    corecore