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Abstract  

 

The distribution of mobile species in dynamic systems can vary greatly over time and space. 

Estimating their population size and geographic range can be problematic, with serious 

implications for conservation assessments. Scarce data on mobile species and the resources 

they need can also limit the type of analytical approaches available to derive such estimates.  

Here we quantify dynamic change in availability and use of key ecological resources required 

for breeding (i.e. food and nesting sites) for a critically endangered nomadic habitat specialist, 
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the swift parrot (Lathamus discolor). We compare estimates of occupied habitat (km2) derived 

from dynamic presence-background data climatic models to those derived from dynamic 

occupancy models that include a direct measure of food availability. We also compare estimates 

that incorporate fine resolution information on key ecological resources (i.e functional habitats) 

into distribution maps with more common approaches that typically focus on broader climatic 

suitability.  For all models, both the extent and spatial location of occupied areas varied 

dramatically over the study period. The occupancy models produced significantly smaller (up to 

an order of magnitude) and more spatially discrete estimates of occupied habitat than climate-

based models. Estimates accounting for the area of functional habitats were also significantly 

smaller than estimates based only on occupied habitat. Importantly, an increase (or decrease) in 

one functional habitat did not necessarily correspond to changes in the other, with 

consequences for overall habitat functionality. We argue that these patterns are typical for 

mobile resource specialists, but currently go unnoticed due to limited data on (1) species’ 

presence/absence and (2) availability of key resources. Understanding changes in the relative 

availability of functional habitats is crucial to informing conservation planning and accurately 

assessing extinction risk for mobile resource specialists. 

 

Introduction  

 

Predicting the distribution of nomadic migrants that respond to dynamic pulses in resource 

availability by exploiting rich patches is a major challenge for conservation planning (Woinarski 

et al. 1992).  These species vary markedly in life history strategies, movement patterns and 

settlement cues (Dean 2004; Newton 2006), and their settlement patterns are poorly 

understood. In addition, they are often resource specialists, which can make them vulnerable to 

resource bottlenecks in time and space (Runge et al. 2014). Conservation of nomadic migrants 

depends on understanding where and when resources are available and how populations 

respond to resource configuration, (Runge et al. 2015a). Ecologically relevant and 

spatiotemporally explicit estimates of these species distributions are needed to guide 

conservation planning (Gaston & Fuller 2009) and accurately assess exposure to threatening 

processes (Runge et al. 2015b).  
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Species distribution models (SDMs) are increasingly used to guide conservation planning by 

characterizing a species’ ecological requirements and projecting this over unsampled areas 

(Guisan & Zimmerman 2000). The relative benefits of different modeling approaches have 

received considerable attention (Hastie & Fithian 2013; Guillera-Arroita et al. 2015). Models 

derived from systematically collected data on species’ presences and absences perform better in 

terms of avoiding false positive and false negative errors than those based on less robust 

sampling designs (Guillera-Arroita et al. 2015). However, few nomadic migrants in dynamic 

environments have been studied using systematic sampling designs at ecologically relevant, 

large spatial scales, partly due to logistic or funding constraints. Hence limited data availability, 

especially the lack of absence records, can limit modeling approaches to less accurate presence-

background techniques (Phillips et al. 2006). Another common limitation when modeling 

species distributions is that the resolution of spatial data layers used to predict a species’ 

distribution may not reflect the resolution of the species’ habitat use. Most SDMs are derived 

from macro-scale environmental characteristics (e.g. temperature, rainfall, vegetation cover) 

(Gaston & Fuller 2009) because continuous fine scale data on specific resources (e.g. food) are 

rarely available and often impractical to collect. If fine-scale habitat features determine species 

occurrence (hereafter: functional habitats), a species’ occupancy of the landscape is likely to be 

overestimated in SDMs that do not account for them (Gaston & Fuller 2009). For habitat 

specialists this effect is magnified because broad-scale environmental data rarely capture higher 

resolution heterogeneity of functional habitats (Jetz et al. 2008). Species also often require 

spatial and temporal co-occurrence of different resources (eg. food near nests - Brambilla & 

Saporetti 2014). Incorporating functional habitats into SDMs together with both presence and 

absence data is likely to improve model estimates and transferability of predictions to 

unsampled areas, but published examples are rare (eg. Vanreusel et al. 2007;  rau jo & Luoto 

2007). 

 

Despite these challenges, there is increasing demand for accurate and fine-scale distribution 

maps to guide conservation planning for threatened species. We explore factors affecting 

accurate distribution modeling for a critically endangered nomadic migrant, the swift parrot 

(Lathamus discolor) (Heinsohn et al. 2015). Settlement patterns of swift parrots are determined 
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by local pulses of food availability over a large potential range (Webb et al. 2014). This dynamic 

and unpredictable system has proven a major challenge for implementing effective conservation 

action (Allchin et al. 2013) that accounts for spatial variation in the location and availability of 

breeding habitat, as well as likely changes in the relative availability of functional habitats. 

Deforestation of swift parrot breeding habitat continues (Supporting Information) without a 

clear understanding of the implications of the loss of particular sites and the effect on local 

habitat quality. Information about the spatial ecology of swift parrots is fundamental to their 

conservation because managing anthropogenic and predator impacts (Stojanovic et al. 2014; 

Heinsohn et al. 2015) on their population is dependent on understanding how swift parrots 

move through their large range. In this context, the implications of using different modeling 

approaches to estimate dynamic distributional changes in occupied functional habitats is crucial 

to conservation planning (Jetz et al. 2008). 

 

We use data from a unique multi-year swift parrot monitoring program to quantify change in 

the use and availability of functional habitats over the breeding range. Using data sampled from 

each functional habitat, our aims were to: (1) compare estimates of occupied habitat derived 

from presence-background modeling incorporating climatic predictors, with estimates from 

occupancy modeling incorporating absence data and a direct measure of food, (2) quantify 

changes in the relative availability of different functional habitats over time, and (3) determine 

if variation in occupancy rates in one functional habitat is associated with changes in the other. 

We discuss our results in the context of knowledge gaps for mobile species that exploit rich 

patches of food in dynamic systems, and the potential shortcomings for conservation planning 

when data on functional habitats are limited.  

 

Methods 

 

Study system and species 

Swift parrots are nectarivorous, tree cavity nesting nomadic migrants that move between their 

wintering range on mainland Australia to the island of Tasmania to breed during the austral 
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summer (Higgins 1999). Breeding swift parrots need the flower of eucalyptus trees for food 

(Webb et al. 2014) and tree cavities for nesting (Webb et al. 2012). Variable but spatially 

structured flowering events of blue (Eucalyptus globulus) and black gum (E. ovata), determine 

settlement patterns of nesting swift parrots (Webb et al. 2014), meaning that the nesting 

locations change annually, and can be separated by up to hundreds of kilometers. 

 

Standardized surveys in potential foraging habitat were carried out for swift parrots over their 

entire core breeding range (Natural Values Atlas 2015) between 2009 and 2014. Survey 

methods are outlined by Webb et al. (2014), but briefly, several hundred sites (range: 771-

1034) were surveyed in eastern Tasmania (~10, 000 km2) during October each year (i.e. the 

early breeding season) to collect detection/non-detection data using repeated five-minute 

counts. Survey sites were located in potential foraging habitat (i.e. ≥1 food tree within 200 m of 

the site centroid). Food trees were surveyed for flowering and scored on a scale of 0 to 4, where 

0= no flower, 1= light, 2= moderate, 3= heavy and 4= very heavy.  

 

Comparing distribution estimates using presence-background vs. presence-absence 

approaches 

 

(i) Habitat suitability models 

To derive the distribution of swift parrots using a standard presence-background data approach 

we fitted annual models of habitat suitability using Maxent v3.3.3 (Phillips et al. 2006). We built 

annual time-sliced distribution maps for the period November 2009 to November 2012, 

matching species occurrence data with site-specific environmental conditions over the 

preceding 12 months before each observation. Daily weather data were unavailable for 2013 

and 2014, and these years could therefore not be included in this component of the analysis.  

This resulted in four annual distribution maps (see Runge et al., 2015b for further details of the 

modeling approach). A 12-month time lag was chosen because this lag had the strongest 

predictive power (3, 6, 9, and 12-month lags were compared using the Area Under the Curve, 

AUC). We used annual time-sliced models because we suspect the use of an area in one year was 
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independent of habitat use in previous years (i.e. no site fidelity), a characteristic of many 

mobile species that rely on fluctuating resources. 

 

The annual distribution maps were created by first populating fine-resolution monthly rasters 

with six different weather variables for each 100m x 100m grid cell in Tasmania over the 

preceding 12 months: total rainfall (mm), average rainfall, maximum temperature (o Celsius), 

minimum temperature, average maximum daily temperature, average minimum daily 

temperature (Xu & Hutchinson 2011). A spatial layer of eucalypt forest was also converted to a 

100m x 100m resolution raster to represent potential habitat (TASVEG 3.0; DPIPWE 2013). All 

variables were checked for correlations - other weather variables were considered but were 

correlated with at least one of the above variables. Next, a global model of swift parrot 

responses to environmental conditions based on all swift parrot occurrences from 2009 to 2012 

(n=477) was created using Maxent, with 10% of records reserved for model validation. This 

global model was then projected across the environmental conditions in the study region during 

the 12 months preceding November each year (approximate midpoint of the swift parrot 

nesting season).   

 

We reclassified the Maxent logistic output into predictions of presence or absence using equal 

sensitivity and specificity threshold values for each year (Liu et al. 2013). This resulted in a map 

of predicted presence or absence for each year from 2009 to 2012.  

 

(ii) Occupancy models representing functional requirements 

To estimate species distribution based on detection/non-detection data and food availability we 

used occupancy models published by Webb et al. (2014), updating them to includetwo 

additional years of data (resulting in a time series from 2009-2014). Using data from each year 

we modelled annual occupancy probabilities (Ψ) and incorporated imperfect detection (p) in 

zero-inflated binomial models (ZIB) using the EM Algorithm to allow the inclusion of a 

Generalized Additive Model (GAM) in the occupancy component of the ZIB (Webb et al. 2014). 

Flower score and a bivariate smoothed spatial term (latitude, longitude) were used as 

covariates in the Ψ component, with flower score as the single covariate in the p component.  
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Model predictions were interpolated across the study area using kriging at 0.02o resolution 

(~1.6x1.6 km) with a neighborhood search radius of 0.05o (~5 km) (sensu Webb et al. 2014). 

We considered these scales to be ecologically relevant based on the degree of spatial 

autocorrelation in each year (Webb et al. 2014).  gain, we assumed the species’ distribution in 

each year to be resource driven and therefore independent of other years. 

 

To produce a binary map of swift parrot occurrence we reclassified Ψ into predictions of 

presence or absence using a minimum threshold value for each annual model that represented 

the mid-point between average Ψ values for occupied and unoccupied sites from our monitoring 

data (Fielding & Haworth 1995).   

 

Estimating temporal change in occupied habitat 

 

Using species distribution outputs from the habitat suitability and occupancy models, we 

derived annual estimates of occupied habitat based on two scenarios that reflected different 

underlying assumptions about habitat availability : (1) TOTAL AREA (area of all cells identified as 

suitable or occupied), and (2) FOREST (area of all eucalypt forest and woodland in cells 

identified as suitable or occupied). Areas falling outside the swift parrot breeding range 

(Natural Values Atlas 2015) were excluded from estimates. 

 

To better account for swift parrot habitat specialization we estimated occupied habitat within 

the species’ two key functional habitats: (1) foraging habitat containing blue or black gums, and 

(2) nesting habitat containing mature, cavity bearing trees (i.e. functional habitat area). For 

these analyses we used two different spatial layers that identified each functional habitat. For 

foraging habitat, we used a spatial polygon layer categorizing the contribution of blue or black 

gum to forest canopy cover (DPIPWE 2010). For nesting habitat, we used a spatial polygon layer 

of mature forest that reflects a higher probability of the presence of tree cavities (Forest 

Practices Authority 2011). To reduce uncertainty, we excluded foraging habitat polygons with 

<5% blue or black gum and those where tree diameter at breast height was <40 cm (flowering 

of young trees is weak and rarely provides an attractive resource - Brereton et al. 2004). 
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Polygons of the mature forest layer were included in the analysis if they were categorized as low 

(5-20%), medium (20-40%) or high (>40%) density of mature tree crowns (Stone 1998). The 

mature forest cover layer was updated using the 30 x 30 m remotely-sensed Global Forest 

Change Layer (Hansen et al. 2013) to account for recent deforestation (also see Supporting 

Information).  

  

Three estimates of functional habitat area were derived from both the habitat suitability models 

and the occupancy models. Firstly, we intersected the final output of each model in each year 

with the foraging habitat layer or the mature forest layer to derive estimates of (i) FORAGING 

HABITAT and (ii) NESTING HABITAT respectively. Then, we derived another estimate of nesting 

habitat, (iii) ADJUSTED NESTING HABITAT, to account for variation in the density of mature trees, 

and thus the likely density of tree cavities. To do this we first reclassified the crown cover 

category for each polygon of the mature forest layer by dividing the area of each polygon by the 

median value of its crown cover category (12.5%, 30% and 60% respectively). Total functional 

habitat area was then calculated by summing FORAGING HABITAT and ADJUSTED NESTING 

HABITAT. 

 

We compared different estimates of occupied habitat derived from habitat suitability maps 

versus occupancy maps using Pearson's product-moment correlations. To determine whether 

these estimates followed the same trends over time when derived from different models, we 

used analysis of covariance (ANCOVA) to compare trends in the slopes of regressions of the 

estimates from different modeling approaches. 

 

Estimating occupancy rates in nesting habitat  

To validate our models and estimate ‘true’ occupancy rates in nesting habitat, we also surveyed 

potential nesting habitat of swift parrots annually during November-December between 2009 

and 2014 (i.e. after the survey of foraging habitat described above and timed to coincide with 

the mid nesting period). Sampling locations were established in the nearest potential nesting 

habitat (i.e. mature forest) to foraging sites where swift parrots were detected. After marking an 

initial sampling location, the observer moved >200 m away on a random compass bearing to 

mark the next site. Sampling locations had at least one potential nest tree using the descriptions 
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outlined in Webb et al. (2012). Swift parrot detection/non-detection data were recorded within 

a 100 m radius around each sampling location. Provisioning swift parrots forage mostly within a 

5 km radius of their nests (D. Stojanovic, unpublished data) so we included nesting survey sites 

if they were within 5 km of the boundary of each occupancy model (with the threshold applied).  

 

For each year we estimated swift parrot nesting occupancy (Ψn) and detectability (pn) 

(MacKenzie et al. 2002) in nesting habitat captured by the respective threshold occupancy 

model using program PRESENCE (Hines 2012). We achieved spatial replication (with 

replacement) by placing a 1 km2 grid over sampled areas, and each sampling location was 

treated as a repeat visit to each grid cell. The mean number of 1 km2 cells sampled each year 

was 128 (SD 45), and the mean number of sampling locations per cell was 3.6 (SD 2.4) 

(Supporting Information). The number of sampling locations per cell was primarily influenced 

by the occurrence of potential nesting trees and access. Importantly, estimates of Ψn are 

conditional on the presence of potential nest trees because no surveys were conducted where 

likely nest trees were absent.  

 

Results 

  

Presence-background vs. presence-absence approaches to mapping distribution 

 

Habitat suitability models produced substantially different distribution maps to the occupancy 

models in terms of the locations predicted to be suitable or occupied over time (Fig. 1 and 2). 

Distribution maps based on habitat suitability models also captured significantly larger areas of 

the landscape compared with those based on occupancy models (i.e. 2 – 12 times larger 

depending on the measure of habitat used) (Table 1, Fig. 3).  There was no significant 

correlation between habitat extent estimates based on the two different modeling approaches 

(Pearson's product-moment correlation; p>0.05, Supporting Information). Model summaries 

and the location of swift parrot detections are provided in Supporting Information. 
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Habitat suitability models captured 16 to 30% more occupied sites than the occupancy models 

in the four years climate data were available (Supporting Information), but they also predicted 

large areas (2618 – 4827 km2) to be suitable in locations where the occupancy models provided 

strong evidence that swift parrots were either absent or present in only very low numbers. 

Mean occupancy probability outside areas captured by the occupancy models from 2009-2012 

was 0.109 (SD 0.099) (Supporting Information). Occupancy models had a high degree of overlap 

with the habitat suitability models (mean: 78%, SD 8.7%, Supporting Information) but 

identified more spatially discrete regions of occupied habitat that reflected patterns of 

flowering in each year (Fig. 2).  

 

Temporal change in occupied habitat 

 

There were large differences in the location of occupied habitat estimated using the occupancy 

models in each year (Fig. 2). Habitat extent derived from the occupancy models also varied 

dramatically between some years, particularly for functional habitats (up to three orders of 

magnitude, Fig. 3; see Supporting Information for individual estimates), although there was no 

significant trend over time (Table 1, p>0.05). Compared to the occupancy models, annual 

estimates of habitat extent derived from habitat suitability models varied less (Fig. 1, Table S5). 

Estimates of functional habitat areas were consistently and substantially smaller than other 

estimates using both modeling approaches, often by several orders of magnitude (Fig. 3). For 

the occupancy models, an increase or decrease in TOTAL AREA or FOREST did not correspond to a 

significant respective increase or decrease in FORAGING HABITAT (p>0.05, Table S2). 

Furthermore, an increase or decrease in availability of one functional habitat did not necessarily 

correspond to a significant increase or decrease in the other (p>0.05, Table S2, Fig. 3). Poor 

flowering conditions in 2014 resulted in only small isolated patches of foraging habitat being 

available and a dramatic reduction in all estimates of occupied habitat (Fig. 2 & 3). Notably, at a 

handful of sites (<10) captured by the 2014 occupancy model, unusually high abundances of 

swift parrots (estimated >300 individuals) appeared to be constantly present while local 

flowering persisted. 
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Occupancy rates in nesting habitat  

 

Predicted swift parrot occupancy Ψn in nesting habitat was high in all years (0.69 to 0.94) except 

2014, with a relatively constant detection rate of 0.49 (SD 0.09, Table 2). Interestingly, large 

annual variations in estimates of NESTING HABITAT and ADJUSTED NESTING HABITAT (Fig. 3) 

were not reflected in the respective annual changes in Ψn (Pearson’s r = -0.33, p = 0.58;  

Pearson’s r = -0.45, p = 0.45, respectively). Although the very restricted functional habitat areas 

identified by the 2014 occupancy model were associated with very high densities of birds in a 

small area of foraging habitat (see above) this did not translate into high Ψn (or pn) in nearby 

nesting habitat.  

 

 

Discussion  

 

By linking estimates of geographic range size to changing availability of functional habitats for a 

nomadic migrant we provide a means to better understand the consequences of dynamic 

variation in species geographic distributions. Our estimates of functional habitat area from 

dynamic occupancy models provide a method for identifying where and when resource 

bottlenecks may occur. For example, although swift parrot breeding had previously been 

recorded at several locations identified in this study, we reveal that in some years most of the 

population is forced to rely on small areas of habitat. Our approach provides a sound basis for 

targeting conservation resources and allows spatially explicit thresholds to be set for functional 

habitats in the context of ongoing habitat loss and dynamic pulses in resource availability that 

can result in very small areas of suitable breeding habitat. Our study also demonstrates that 

assessment of spatiotemporal variation in exposure to other threats (eg. nest predation) may be 

improved with modeling approaches that account for ecologically relevant information (i.e. 

presence/absence of target species and functional habitats). 
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By modeling change in species occupancy and selecting only the functional habitat from annual 

distributions, we detected dynamic variation in ecologically relevant habitats that was not 

detected by more commonly applied habitat suitability models (Fig. 3). Significant differences 

between estimates of occupied habitat were dependent on the type and function of habitat 

considered and the modeling technique, and illustrated how the method utilized to calculate 

geographic range size can in itself cause non-trivial variation and uncertainty in occupancy 

estimates of potential habitat (Jime ne -Valverde et al. 2008). This may have important 

implications for assessing extinction risk of nomadic migrants because scarce data often limit 

modeling approaches that can be utilized for achieving conservation planning and assessment 

objectives (Jetz et al. 2008; Runge et al. 2015b; Tulloch et al. 2016). In particular, the high rate of 

Type I errors (i.e. false positives) inherent in our habitat suitability models limits their 

application to conservation planning in a landscape with multiple competing land uses (e.g. 

industrial scale logging), and detecting trends over time. There will always be tradeoffs between 

the rate of Type I and Type II errors (Field et al. 2007); however, our occupancy models provide 

strong evidence on which to base conservation planning in an environment where habitat 

protection often has considerable economic implications for competing interests. Furthermore, 

our results demonstrate the importance of incorporating direct measures of resource 

availability into species distribution predictions, as well as distinguishing functional habitats in 

the environmental matrix.  

 

Readily available presence-only data may be sufficient to understand the distributions of well-

studied species, providing occurrence records cover important environmental gradients 

(Lentini & Wintle 2015). However, we show this may not be the case for specialized species 

with dynamic distributions. Our presence-background models used occurrence data collected in 

a spatially stratified, systematic sampling design, but yielded much larger estimates of swift 

parrot distribution over time compared to occupancy models. Sensitivity analyses revealed that 

these differences remained even when the threshold assigning species’ presence/absence to the 

occupancy model results was reduced by 50% (Supporting Material). The strong over-

prediction (i.e. higher Type I error rate) of the presence-background models is because they do 

not explicitly account for food availability or spatial location, and hence spatial structuring of 

the population each year (Estrada et al. 2016). Because flowering is also typically spatially 
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structured (Webb et al. 2014), and is likely influenced by climatic variability, explicitly modeling 

flowering patterns (Giles et al. 2016) rather than birds may be an interesting area of future 

research to predict changes in food availability and the occurrence of swift parrots (Woinarski 

et al. 2000).    

 

We suggest the greater percentage of occupied sites captured by these models is a reflection of 

the species realized niche (while breeding) being greater than its fundamental niche (Pulliam 

2000), likely resulting from limitation of one or both functional habitats. Alternatively, this may 

also be attributable to records of swift parrots that had not yet settled to breed. Unfortunately, 

most data for species with similarly variable distributions consist of presence-only records that 

have not been collected in a structured sampling design (Runge et al. 2015b). Our study 

highlights the value of investing in the acquisition of high quality (i.e. repeated, standardized) 

presence data and absence data for threatened nomadic migrants.  

 

The small estimates of functional habitat area represent a sobering reality for a species 

experiencing widespread anthropogenic landscape change (Supporting Information) and 

spatially heterogeneous threats like nest predation. While the spatial location and extent of 

functional habitat areas varied considerably between years (Fig. 3), nesting occupancy 

remained consistently high until 2013 (up to 94%). This suggests either the abundance-

occupancy relationship in nesting habitat varied between years, or some birds did not breed 

due to nesting site limitation, particularly in 2014 (Table 2). Moreover, even our detailed 

estimates of functional habitat area are likely to overestimate occupied habitat (e.g. Stojanovic 

et al. 2012, 2014b). Accurately quantifying resources at such fine resolutions is often not 

possible but important to consider, irrespective of the sophistication of modeling approaches 

(Collier et al. 2012).   

 

The relative availability and spatial configuration of functional habitats for mobile species has 

important ramifications for the fitness of individuals and carrying capacity within occupied 

areas (Brambilla & Saporretti 2014; Olsson & Bolen 2014). The fitness of swift parrots is 
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improved by breeding in the richest patch of food available in the landscape (Stojanovic et al. 

2015) but nest site availability will determine how many birds will be able to breed in a given 

patch. For example, as swift parrot settlement patterns changed over time, an 

increase/decrease in one functional habitat did not necessarily correspond to an 

increase/decrease in the other (Fig. 3). For species that experience dynamic change in 

geographic distribution, an increase in the extent of occupied area may not equate to better 

habitat quality or function. Rather, habitat quality is contingent on the relative availability and 

overlap of key functional habitats. Our study indicates that the temporal availability of one 

functional habitat (e.g. nesting sites) can be restricted due to the absence of another key 

resource (e.g. foraging resources). When the availability of one or both functional habitats for 

the swift parrot falls below an (as yet undefined) threshold it may restrict settlement options 

and limit breeding participation. We argue that many nomadic migrants experience resource 

bottlenecks due to limitation of one or more functional habitats, but these bottlenecks go 

unmeasured due to data deficiency and lack of rigorous research (Newton 2012).  

 

By incorporating a direct measure of food availability and high resolution mapping of functional 

habitat features, we derived ecologically relevant and mechanistically-informed estimates of 

occupied swift parrot breeding habitat. Even when a species appears to occupy a large area, 

resource dependence may mean only a small fraction of that area can actually be exploited (eg. 

Jetz et al. 2008). Hence, the loss of small areas of one (or both) functional habitats can have 

profound effects on the population and negate potential benefits from conservation actions 

elsewhere (Runge et al. 2015a).  Given the spatial and temporal scale at which habitat loss and 

disturbance are occurring in the swift parrot breeding range (Supporting Information), we 

argue that spatially discrete regions should be managed in a way that reflects the availability of 

functional habitats at ecologically relevant scales and their importance to the population in a 

given year. For example, the foraging range of swift parrots from a nest site is one relevant scale 

to consider. Similarly, the scale (and location) at which breeding aggregations occur, such as 

those identified in this study, are important at the population-level. The availability of functional 

habitats at these two scales, in combination with changing flowering conditions, determines the 

carrying capacity of the breeding range in a given year, particularly during resource bottlenecks. 
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Therefore, habitat management that does not consider the spatial location, scale and relative 

availability of specific habitats is likely to be less effective.  

 

Nomadic migrants are a chronically understudied species guild, but represent an important 

component of animal movement strategies (Dingle 1996). Many nomadic species  require 

urgent conservation attention (Faaborg et al. 2010) but a lack of robust data can be a serious 

impediment to conservation assessment and effective conservation actions. We encourage 

conservation agencies to recognize the limitations of using distribution models derived from 

incomplete data (see also Tulloch et al. 2016), and to develop conservation plans that account 

for functional habitats where possible.  Integrating temporal change in resource availability into 

conservation planning for mobile species is challenging but critical to identifying key locations, 

dependencies among habitats and sites, and exposure to other threats (Runge et al. 2016). To 

address this challenge, investing in the collection of both high quality occupancy and 

environmental data to estimate species distributions should be a priority. In the absence of such 

information, many knowledge gaps for nomads will continue to go unaddressed, leading to 

inaction or poorly directed resources that provide little conservation benefit.  
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Table 1. ANCOVA results testing for the effect of modeling approach and year on estimates of 

occupied habitat (model = habitat suitability model versus occupancy model). 

 

 

Measure of habitat Variable F-value p-value 

TOTAL AREA  
model 46.5 0.006 

year 1.2 0.48 

FOREST 
model 36.4 0.009 

year 2.0 0.31 

NESTING 
model 36.1 0.009 

year 2.1 0.29 

ADJUSTED NESTING HABITAT 
model 29.9 0.012 

year 2.3 0.26 

FORAGING HABITAT 
model 74.1 0.003 

year 1.1 0.51 
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Table 2. Nesting occupancy (Ψn) and detectability (pn) rates in surveyed nesting habitat.  

 

 

 Year 

Parameter 2009 2010 2011 2012 2013 2014 

Naïve Ψn 0.66 0.66 0.51 0.59 0.65 0.29 

Ψn 0.74 0.83 0.69 0.94 0.74 * 

SE 0.07 0.05 0.06 0.07 0.05 * 

pn 0.4 0.57 0.55 0.49 0.57 0.35 

SE 0.03 0.03 0.04 0.03 0.03 0.04 

 

Naïve Ψn = observed occupancy 

* could not be estimated due to poor model fit  

 

Figure legends 

 

Figure 1. Habitat suitability models (using Maxent) from 2009-2012 (left to right a, b, c and d) 

using equal sensitivity and specificity threshold. Threshold values for each year were 0.1557, 

0.2070, 0.2481, 0.1670, respectively. Grey line is the swift parrot breeding range (Natural 

Values Atlas 2015). 
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Figure 2. Swift parrot occupancy models from 2009-2014 (left to right a, b, c, d, e, f). NESTING 

HABITAT (red), FORAGING HABITAT (blue). Threshold values for each year were 0.3637, 

0.3904, 0.4305, 0.3932, 0.3635, 0.2926, respectively. 
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Figure 3. Annual estimates of occupied habitat from habitat suitability models (dashed lines) 

and occupancy models (solid lines) in the swift parrot breeding range over 6 years: + TOTAL 

 RE , ◊ FOREST, ∆ NESTING H BIT T, □  DJUSTED NESTING H BIT T, ○ FOR GING 

HABITAT, − Total functional habitat area; Y axis is on the logarithmic scale.  
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 Appendix S1. Supporting Map 

 

Figure S1. Forest loss/disturbance (red) in Tasmania from ~1997-2013 (adapted from 

Hansen et al. 2013). Dark green generally indicates forested areas, light green is 

generally non-forested environments. 



Appendix S2. Supporting Figure 

 

Figure S2. Swift parrot occupancy model predictions of TOTAL AREA from 2009-2014 

showing sites where birds were detected (black squares, N=769). 

 

 

 

 



Appendix S3. Supporting Tables 

Table S1. Model summaries for annual swift parrot occupancy models implemented as 

per Webb et al. (2014); s(lat, long) = bivariate smoothed spatial term, flower = site-level 

flower score. 

 

 

 

 

 

 s(lat, long) Flower   
Year χ2 p z-value p Adjusted R2  Deviance 

2009 174.7 <0.0001 21.1 <0.0001 0.56 56% 

2010 296.6 <0.0001 5.6 <0.0001 0.62 61% 

2011 313.3  <0.0001 23.0  <0.0001 0.62 62% 

2012 499.3  <0.0001 12.7  <0.0001 0.64 64% 

2013 340.4  <0.0001 13.2  <0.0001 0.59 62% 

2014 68.3  <0.0001 20.4  <0.0001 0.41 43% 



Table S2. Metrics of Maxent model performance and variable effect sizes. Eucalypt forest and woodland (EucFor), Maximum temperature 

(MaxTemp), Minimum temperature (MinTemp), Average maximum temperature (AvMaxTemp), Average minimum temperature 

(AvMinTemp), Average rainfall (AvRain), Total rainfall (TotRain). Temperature and rainfall variables are for the preceding 12 months. 

The similarity between training and test AUC statistics indicates model fit is good. 

  AUC  

Equal training 
sensitivity and 

specificity Percent contribution (permutation importance) 

Year 
Occurrences 

used Training Test Prevalence 
Training 
omission 

Test 
omission EucFor MaxTemp MinTemp AvMaxTemp AvMinTemp AvRain TotRain 

2009 66 0.950 0.814 0.07 0.12 0.10 1.09 8.0 26.08 13.01 21.41 21.26 9.17 

2010 143 0.971 0.911 0.04 0.07 0.05 0.21 15.22 14.58 0.20 18.56 46.63 1.86 

2011 126 0.947 0.875 0.09 0.13 0.10 5.76 13.78 10.17 9.19 7.98 52.11 1.01 

2012 142 0.967 0.888 0.05 0.11 0.12 0.01 33.90 16.30 7.68 7.78 33.81 0.52 

 

 

 

 

 

 



 

Table S3. The number of sampled 1 km2 grid cells in potential swift parrot nesting 

habitat over 6 years of monitoring, and the number of sampling locations per cell. 

Year Number of 1 km2 cells 
sampled 

Mean sampling visits 
per cell 

Range of sampling 
visits 

2009 51 8.5 3-39 

2010 127 3.2 1-16 

2011 127 2.7 1-10 

2012 152 2.1 1-8 

2013 189 2.5 1-9 

2014 119 2.8 1-13 

 

 

 

Table S4. Pearson product-moment correlations (r) comparing different metrics of 

occupied habitat within and between modeling approaches. 

 

Correlation Measure of habitat Value 

Correlations 
comparing estimates 
between habitat 
suitability models and 
occupancy models 

TOTAL AREA t = 0.68 p = 0.57 r = 0.43 

FOREST t = 1.46 p = 0.28 r = 0.72 

NESTING HABITAT t = 1.69 p = 0.23 r = 0.77 

ADJUSTED NESTING 
HABITAT 

t = 1.35 p = 0.31 r = 0.69 

Correlations 
comparing FORAGING 
HABITAT estimates 
with other metrics 
from the occupancy 
models  

TOTAL AREA versus 
FORAGING HABITAT 

t = 2.16 p = 0.1 r = 0.73 

FOREST versus 
FORAGING HABITAT 

t = 1.29 p = 0.27 r = 0.54 

NESTING versus 
FORAGING HABITAT 

t = 1.36 p = 0.25 r = 0.56 

ADJUSTED NESTING 
HABITAT versus 
FORAGING HABITAT 

t = 1.41 p = 0.23 r = 0.58 

 

 

 

 

 



Table S5. Percentage of occupied sites captured by the habitat suitability models and 

occupancy models with their respective threshold applied. 

 Year 

 2009 2010 2011 2012 2013 2014 

Occupancy model 64% 77% 64% 60% 78% 18% 

Habitat suitability model 94% 93% 87% 89% - - 

Difference between 
modeling approaches 

30% 16% 23% 29% NA NA 

 

 

 

Table S6. Mean estimate of occupancy in cells falling outside the TOTAL AREA map 

identified by the occupancy models (2009-2012).  

Year 
Mean 

occupancy S.D. 

2009 0.161 0.083 

2010 0.083 0.092 

2011 0.099 0.106 

2012 0.094 0.093 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table S7. Estimates of different types of occupied habitat based on habitat suitability 

models versus occupancy models. 

 

  
Year 

  
Metric 

(km2) 
2009 2010 2011 2012 2013 2014 

Habitat 

suitability 

models  

TOTAL 

AREA 
3515 3971 5911 3688 - - 

FOREST  1856 2170 3936 2472 - - 

FORAGING 

HABITAT 
172 217 241 201 - - 

NESTING 

HABITAT 
1141 1538 2575 1604 - - 

ADJUSTED 

NESTING 

HABITAT 

379 548 967 600 - - 

Occupancy 

models 

TOTAL 

AREA 
377 1498 1084 1070 1286 131 

FOREST  212 845 963 687 974 62 

FORAGING 

HABITAT 
23 98 20 40 49 7.5 

NESTING 

HABITAT 
133 652 625 314 701 41 

ADJUSTED 

NESTING 

HABITAT 

43 257 265 83 272 11 

 
TOTAL 

BAOO 
66 355 285 123 321 19 

TOTAL AREA overlap of 

habitat suitability 

models with occupancy 

models 

327 1210 839 705 - - 

 

  



Appendix S4. Sensitivity Analyses 

We conducted a sensitivity analysis to explore the effect of the threshold selected for 

assigning species presence versus absence to occupancy models on the location of areas 

occupied by the swift parrot each year. There was no evidence that differences between 

the modeling approaches was an artefact of their respective thresholds. 

 

Figure S3. Swift Parrot occupancy models from 2009-2012 with half the mid-point 

threshold value applied. The increase in area captured as a result of lowering the 

threshold clearly follows a different pattern to the habitat suitability models (see main 

text Figure 1). 
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