1,578 research outputs found
Structure Functions and the Spin of the Nucleon: From HERMES to COMPASS
The HERMES and SMC experiments have determined the contribution of different
quark flavors to the nucleon spin in a large range of Bjorken-x via
semi-inclusive deep inelastic scattering. The main goal of the COMPASS
experiment is to measure the gluon polarization in the nucleon. In all
experiments a polarized lepton is scattered off a polarized nucleon. Latest
results from HERMES and perspectives for COMPASS running in 2001 and beyond are
presented.Comment: 4 pages, 2 figures, Contribution to the XXXVIth Rencontres de Moriond
- "QCD and High Energy Hadronic Interactions" - Les Arcs (Fr), March 17-24,
200
TDC Chip and Readout Driver Developments for COMPASS and LHC-Experiments
A new TDC-chip is under development for the COMPASS experiment at CERN. The
ASIC, which exploits the 0.6 micrometer CMOS sea-of-gate technology, will allow
high resolution time measurements with digitization of 75 ps, and an
unprecedented degree of flexibility accompanied by high rate capability and low
power consumption. Preliminary specifications of this new TDC chip are
presented.
Furthermore a FPGA based readout-driver and buffer-module as an interface
between the front-end of the COMPASS detector systems and an optical S-LINK is
in development. The same module serves also as remote fan-out for the COMPASS
trigger distribution and time synchronization system. This readout-driver
monitors the trigger and data flow to and from front-ends. In addition, a
specific data buffer structure and sophisticated data flow control is used to
pursue local pre-event building. At start-up the module controls all necessary
front-end initializations.Comment: 5 pages, 4 figure
Analysing powers for the reaction and for np elastic scattering from 270 to 570 MeV
The analysing power of the reaction for neutron energies between threshold and 570 MeV has been determined
using a transversely polarised neutron beam at PSI. The reaction has been
studied in a kinematically complete measurement using a time-of-flight
spectrometer with large acceptance. Analysing powers have been determined as a
function of the c.m. pion angle in different regions of the proton-proton
invariant mass. They are compared to other data from the reactions and . The np elastic scattering analysing power was determined as a
by-product of the measurements.Comment: 12 pages, 6 figures, subitted to EPJ-
The reaction from threshold up to 570 MeV
The reaction has been studied in a
kinematically complete measurement with a large acceptance time-of-flight
spectrometer for incident neutron energies between threshold and 570 MeV. The
proton-proton invariant mass distributions show a strong enhancement due to the
pp() final state interaction. A large anisotropy was found in the
pion angular distributions in contrast to the reaction . At small energies, a large forward/backward asymmetry has been
observed. From the measured integrated cross section , the isoscalar cross section has been extracted.
Its energy dependence indicates that mainly partial waves with Sp final states
contribute. Note: Due to a coding error, the differential cross sections as shown in Fig. 9 are too small by a factor of two, and
inn Table 3 the differential cross sections
are too large by a factor of . The integrated cross sections and all
conclusions remain unchanged. A corresponding erratum has been submitted and
accepted by European Physics Journal.Comment: 18 pages, 16 figure
The Longitudinal Polarimeter at HERA
The design, construction and operation of a Compton back-scattering laser
polarimeter at the HERA storage ring at DESY are described. The device measures
the longitudinal polarization of the electron beam between the spin rotators at
the HERMES experiment with a fractional systematic uncertainty of 1.6%. A
measurement of the beam polarization to an absolute statistical precision of
0.01 requires typically one minute when the device is operated in the
multi-photon mode. The polarimeter also measures the polarization of each
individual electron bunch to an absolute statistical precision of 0.06 in
approximately five minutes. It was found that colliding and non-colliding
bunches can have substantially different polarizations. This information is
important to the collider experiments H1 and ZEUS for their future
longitudinally polarized electron program because those experiments use the
colliding bunches only.Comment: 21 pages (Latex), 14 figures (EPS
Fast Photon Detection for Particle Identification with COMPASS RICH-1
Particle identification at high rates is an important challenge for many
current and future high-energy physics experiments. The upgrade of the COMPASS
RICH-1 detector requires a new technique for Cherenkov photon detection at
count rates of several per channel in the central detector region, and a
read-out system allowing for trigger rates of up to 100 kHz. To cope with these
requirements, the photon detectors in the central region have been replaced
with the detection system described in this paper. In the peripheral regions,
the existing multi-wire proportional chambers with CsI photocathode are now
read out via a new system employing APV pre-amplifiers and flash ADC chips. The
new detection system consists of multi-anode photomultiplier tubes (MAPMT) and
fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip.
The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run.
We present the photon detection design, constructive aspects and the first
Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30
June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption
of Fig.
Fast photon detection for the COMPASS RICH detector
The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring
Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a
wide momentum range. For the data taking in 2006, the COMPASS RICH has been
upgraded in the central photon detection area (25% of the surface) with a new
technology to detect Cherenkov photons at very high count rates of several 10^6
per second and channel and a new dead-time free read-out system, which allows
trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of
576 visible and ultra-violet sensitive multi-anode photomultipliers with 16
channels each. The upgraded detector showed an excellent performance during the
2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06
The Fast Read-out System for the MAPMTs of COMPASS RICH-1
A fast readout system for the upgrade of the COMPASS RICH detector has been
developed and successfully used for data taking in 2006 and 2007. The new
readout system for the multi-anode PMTs in the central part of the photon
detector of the RICH is based on the high-sensitivity MAD4
preamplifier-discriminator and the dead-time free F1-TDC chip characterized by
high-resolution. The readout electronics has been designed taking into account
the high photon flux in the central part of the detector and the requirement to
run at high trigger rates of up to 100 kHz with negligible dead-time. The
system is designed as a very compact setup and is mounted directly behind the
multi-anode photomultipliers. The data are digitized on the frontend boards and
transferred via optical links to the readout system. The read-out electronics
system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor
change
The X-ray Telescope of CAST
The Cern Axion Solar Telescope (CAST) is in operation and taking data since
2003. The main objective of the CAST experiment is to search for a hypothetical
pseudoscalar boson, the axion, which might be produced in the core of the sun.
The basic physics process CAST is based on is the time inverted Primakoff
effect, by which an axion can be converted into a detectable photon in an
external electromagnetic field. The resulting X-ray photons are expected to be
thermally distributed between 1 and 7 keV. The most sensitive detector system
of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system.
With the X-ray telescope of CAST a background reduction of more than 2 orders
off magnitude is achieved, such that for the first time the axion photon
coupling constant g_agg can be probed beyond the best astrophysical constraints
g_agg < 1 x 10^-10 GeV^-1.Comment: 19 pages, 25 figures and images, replaced by the revised version
accepted for publication in New Journal of Physic
- …