1,064 research outputs found

    The effect of immigrants on natives' incomes through the use of capital / BEBR No.878

    Get PDF
    Includes bibliographical references (p. 19)

    Parameter Optimisation of a Virtual Synchronous Machine in a Microgrid

    Full text link
    Parameters of a virtual synchronous machine in a small microgrid are optimised. The dynamical behaviour of the system is simulated after a perturbation, where the system needs to return to its steady state. The cost functional evaluates the system behaviour for different parameters. This functional is minimised by Parallel Tempering. Two perturbation scenarios are investigated and the resulting optimal parameters agree with analytical predictions. Dependent on the focus of the optimisation different optima are obtained for each perturbation scenario. During the transient the system leaves the allowed voltage and frequency bands only for a short time if the perturbation is within a certain range.Comment: 17 pages, 5 figure

    Morphogen-defined patterning of Escherichia coli enabled by an externally tunable band-pass filter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gradients of morphogens pattern cell fate – a phenomenon that is especially important during development. A simple model system for studying how morphogens pattern cell behavior would overcome difficulties inherent in the study of natural morphogens <it>in vivo</it>. A synthetic biology approach to building such a system is attractive.</p> <p>Results</p> <p>Using an externally-tunable band-pass filter paradigm, we engineered <it>Escherichia coli </it>cells to function as a model system for the study of how multiple morphogens can pattern cell behavior. We demonstrate how our system exhibits behavior such as morphogen crosstalk and how the cells' growth and fluorescence can be patterned in a number of complex patterns. We extend our cell patterning from 2D cultures on the surface of plates to 3D cultures in soft agarose medium.</p> <p>Conclusion</p> <p>Our system offers a convenient, well-defined model system for fundamental studies on how multiple morphogen gradients can affect cell fate and lead to pattern formation. Our design principles could be applied to eukaryotic cells to develop other models systems for studying development or for enabling the patterning of cells for applications such as tissue engineering and biomaterials.</p

    Coulomb charging energy for arbitrary tunneling strength

    Full text link
    The Coulomb energy of a small metallic island coupled to an electrode by a tunnel junction is investigated. We employ Monte Carlo simulations to determine the effective charging energy for arbitrary tunneling strength. For small tunneling conductance, the data agree with analytical results based on a perturbative treatment of electron tunneling, while for very strong tunneling recent semiclassical results for large conductance are approached. The data allow for an identification of the range of validity of various analytical predictions.Comment: 4 pages REVTeX, incl 3 figures, to appear in Europhys.Let

    Asymptotic behaviour of multiple scattering on infinite number of parallel demi-planes

    Full text link
    The exact solution for the scattering of electromagnetic waves on an infinite number of parallel demi-planes has been obtained by J.F. Carlson and A.E. Heins in 1947 using the Wiener-Hopf method. We analyze their solution in the semiclassical limit of small wavelength and find the asymptotic behaviour of the reflection and transmission coefficients. The results are compared with the ones obtained within the Kirchhoff approximation

    In Vitro Recombination of Non-Homologous Genes Can Result in Gene Fusions that Confer a Switching Phenotype to Cells

    Get PDF
    Regulation of protein activity is central to the complexity of life. The ability to regulate protein activity through exogenously added molecules has biotechnological/biomedical applications and offers tools for basic science. Such regulation can be achieved by establishing a means to modulate the specific activity of the protein (i.e. allostery). An alternative strategy for intracellular regulation of protein activity is to control the amount of protein through effects on its production, accumulation, and degradation. We have previously demonstrated that the non-homologous recombination of the genes encoding maltose binding protein (MBP) and TEM1 β-lactamase (BLA) can result in fusion proteins in which β-lactamase enzyme activity is allosterically regulated by maltose. Here, through use of a two-tiered genetic selection scheme, we demonstrate that such recombination can result in genes that confer maltose-dependent resistance to β-lactam even though they do not encode allosteric enzymes. These ‘phenotypic switch’ genes encode fusion proteins whose accumulation is a result of a specific interaction with maltose. Phenotypic switches represent an important class of proteins for basic science and biotechnological applications in vivo

    Differentiation of Candida dubliniensis from Candida albicans with the use of killer toxins

    Get PDF
    The aim of this study was to report the ability of killer toxins, previously used as biotyping techniques, as a new tool to differentiate C. albicans from C. dubliniensis. The susceptibility of C. albicans and C. dubliniensis to killer toxins ranged from 33.9 to 93.3% and from 6.67 to 93.3%, respectively.Avaliou-se a capacidade das toxinas killer, previamente utilizadas na biotipagem de C. albicans, como método para diferenciar C. albicans de C. dubliniensis. A susceptibilidade de C. albicans e C. dubliniensis às toxinas killer variou de 33,9% a 93,3% para C. albicans e de 6,67% a 93,3% para C. dubliniensis

    Path integrals, particular kinds, and strange things

    Get PDF
    This paper describes a path integral formulation of the free energy principle. The ensuing account expresses the paths or trajectories that a particle takes as it evolves over time. The main results are a method or principle of least action that can be used to emulate the behaviour of particles in open exchange with their external milieu. Particles are defined by a particular partition, in which internal states are individuated from external states by active and sensory blanket states. The variational principle at hand allows one to interpret internal dynamics - of certain kinds of particles - as inferring external states that are hidden behind blanket states. We consider different kinds of particles, and to what extent they can be imbued with an elementary form of inference or sentience. Specifically, we consider the distinction between dissipative and conservative particles, inert and active particles and, finally, ordinary and strange particles. Strange particles (look as if they) infer their own actions, endowing them with apparent autonomy or agency. In short - of the kinds of particles afforded by a particular partition - strange kinds may be apt for describing sentient behaviour.Comment: 31 pages (excluding references), 6 figure
    • …
    corecore