151 research outputs found

    Analyse der langfristigen Auswirkungen von Elektromobilität auf das deutsche Energiesystem im europäischen Energieverbund

    Get PDF
    This work analyses the long-term impact of electric mobility on the energy system, and aims to support the decision making of actors in the European electricity system, which takes electric mobility into account. For this purpose the Europe-wide development of electric mobility and of the energy system are examined in an integrated way based on a model coupling. This allows to analyse the interdependencies of both developments in this model-based approach endogenously

    Exploring the trilemma of cost-efficiency, landscape impact and regional equality in onshore wind expansion planning

    Get PDF
    Onshore wind development has historically focused on cost-efficiency, which may lead to uneven turbine distributions and public resistance due to landscape impacts. Using a multi-criteria planning approach, we show how onshore wind capacity targets can be achieved by 2050 in a cost-efficient, visually unobtrusive and evenly distributed way. For the case study of Germany, we build on the existing turbine stock and use open data on technically feasible turbine locations and data on scenicness of landscapes to plan the optimal expansion. The analysis shows that while the trade-off between optimizing either cost-efficiency or landscape impact of the turbines is rather weak with about 15% higher costs or scenicness, an even distribution has a large impact on these criteria. However, a more evenly distributed expansion is necessary for the achievement of the targeted south quota, a policy target that calls for more wind turbine additions in southern Germany. Our analysis assists stakeholders in resolving the onshore wind expansion trilemma

    Optimal Configuration of Wind-to-Ammonia with the Electric Network and Hydrogen Supply Chain: A Case Study of Inner Mongolia

    Full text link
    Converting wind energy into ammonia (WtA) has been recognized as a promising pathway to enhance the usage of wind generation. This paper proposes a generic optimal configuration model of WtA at the network level to minimize the ammonia production cost by optimizing capacities and locations of WtA facilities including wind turbines, electrolyzers, hydrogen tanks and optimizing supply modes among regions. Specifically, the temporal fluctuation characteristics of wind resources, the operation flexibility of the ammonia synthesis reactor and the transport distances are considered. Three typical supply modes, i.e., the Local WtA, the EN (electric network)-based WtA and the HSC (hydrogen supply chain)-based WtA, combined with two energy transport modes including EN and HT (Hydrogen truck trailers) are included with the consideration of the maximal energy transport capacity of EN and transport distance per day of HT (500km). Real data of Inner Mongolia (a typical province in China with rich wind resources and existing ammonia industries) is employed to verify the effectiveness and significance of proposed model. The effect of above significant factors on optimal planning capacity of WtA facilities and optimal energy transport modes is analyzed, which provides guidelines for WtA configuration. The economic analysis shows that the average LCOA (levelized cost of ammonia) for WtA is approximately 0.57 euro/kg in Inner Mongolia and comparable to that for CtA (coal-to-ammonia, 0.41 euro/kg) with a reduction of 30% in capacity cost of the facilities

    High-resolution large-scale onshore wind energy assessments : A review of potential definitions, methodologies and future research needs

    Get PDF
    Funding Information: KG, MK, JS, OT and SW gratefully acknowledge support from the European Research Council (’‘reFUEL’’ ERC-2017-STG 758149). JL has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 715132). MJ and IS were funded by the Engineering and Physical Sciences Research Council [ EP/R045518/1 ] through the IDLES programme. JW is funded through an ETH Postdoctoral Fellowship and acknowledges support from the ETH foundation and the Uniscientia foundation. The authors gratefully acknowledge the helpful comments of three anonymous reviewers on an earlier version of this paper.Peer reviewedPublisher PD

    Woher kommt der grüne Wasserstoff?

    Get PDF
    Grüner Wasserstoff ist eine Voraussetzung zur Errei- chung von Klimaneutralität. Die Potenziale zur grü- nen Wasserstoffproduktion sind weltweit verteilt. Die technologische Weiterentwicklung in den Bereichen erneuerbare Energieerzeugung und Elektrolyse wird dazu führen, dass die Gestehungskosten für grünen Wasserstoff sich weltweit angleichen und andere Standortfaktoren stärker in den Vordergrund rücken. Dazu gehören die Verfügbarkeit von Flächen zur EE- Produktion und die Investitionssicherheit durch stabile politische Rahmenbedingungen. Auch Nach- haltigkeitskriterien z. B. bei der Wasserbereitstellung müssen berücksichtigt werden. Da schon bald grö- ßere Mengen an grünem Wasserstoff benötigt wer- den, sollten die weltweit vorhandenen nachhaltig nutzbaren Potenziale in internationaler Partnerschaft parallel ausgebaut werden. Grüner Wasserstoff wird zum globalen Handeslgu

    Woher kommt der grüne Wasserstoff?

    Get PDF
    Das Energiesystem der Zukunft wird stark durch Elektrifizierung geprägt sein. Für die Langzeitspeicherung von Energie sowie für Bereiche, die sich nicht sinnvoll durch Strom defossilieren lassen, werden aber auch in Zukunft chemische Energieträger benötigt. Das Ziel der Klimaneutralität bedingt, dass diese Energieträger vollständig emissionsfrei aus erneuerbaren Energien (EE) hergestellt werden. Diese grünen Energieträger sind transportier- und handelbar, sodass sich ein internationaler Markt für grünen Wasserstoff und seine Folgeprodukte entwickeln wird. Derzeit gibt es diesen Markt noch nicht. Grüner Wasserstoff ist preislich noch nicht konkurrenzfähig gegenüber fossilen Brennstoffen. Den größten Anteil am Wasserstoffpreis haben die Kosten für die Elektrolyseanlage sowie die Kosten für die Strombereitstellung. Die besten Bedingungen für die Wasserstoffproduktion bieten daher EE-Standorte und Technologien mit hohen Volllaststundenzahlen, an denen auch der Elektrolyseur bei wenig EE-Abregelung auf viele Betriebsstunden kommt

    Vulnerabilities and fisheries impacts:The uncertain future of manta and devil rays

    Get PDF
    Manta and devil rays of the subfamily Mobulinae (mobulids) are rarely studied, large, pelagic elasmobranchs, with all eight of well-evaluated species listed on the IUCN Red List as threatened or near threatened. Mobulids have life history characteristics (matrotrophic reproduction, extremely low fecundity, and delayed age of first reproduction) that make them exceptionally susceptible to overexploitation. Targeted and bycatch mortality from fisheries is a globally important and increasing threat, and targeted fisheries are incentivized by the high value of the global trade in mobulid gill plates. Fisheries bycatch of mobulids is substantial in tuna purse seine fisheries. Thirteen fisheries in 12 countries specifically targeting mobulids, and 30 fisheries in 23 countries with mobulid bycatch were identified. Aside from a few recently enacted national restrictions on capture, there is no comprehensive monitoring, assessment or control of mobulid fisheries or bycatch. Recent listing through the Convention on the International Trade in Endangered Species (CITES) may benefit mobulids of the genus Manta (manta rays), but none of the mobulids in the genus Mobula (devil rays) are protected. The relative economic costs of catch mitigation are minimal, particularly compared with a broad range of other, more complicated, marine conservation issues

    Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1

    Get PDF
    There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover
    corecore