3,057 research outputs found

    Myosin motors fragment and compact membrane-bound actin filaments

    No full text
    Cell cortex remodeling during cell division is a result of myofilament-driven contractility of the cortical membrane-bound actin meshwork. Little is known about the interaction between individual myofilaments and membrane-bound actin filaments. Here we reconstituted a minimal actin cortex to directly visualize the action of individual myofilaments on membrane-bound actin filaments using TIRF microscopy. We show that synthetic myofilaments fragment and compact membrane-bound actin while processively moving along actin filaments. We propose a mechanism by which tension builds up between the ends of myofilaments, resulting in compressive stress exerted to single actin filaments, causing their buckling and breakage. Modeling of this mechanism revealed that sufficient force (∌20 pN) can be generated by single myofilaments to buckle and break actin filaments. This mechanism of filament fragmentation and compaction may contribute to actin turnover and cortex reorganization during cytokinesis

    Minimalist AdaBoost for blemish identification in potatoes

    Get PDF
    We present a multi-class solution based on minimalist Ad- aBoost for identifying blemishes present in visual images of potatoes. Using training examples we use Real AdaBoost to rst reduce the fea- ture set by selecting ve features for each class, then train binary clas- siers for each class, classifying each testing example according to the binary classier with the highest certainty. Against hand-drawn ground truth data we achieve a pixel match of 83% accuracy in white potatoes and 82% in red potatoes. For the task of identifying which blemishes are present in each potato within typical industry dened criteria (10% coverage) we achieve accuracy rates of 93% and 94%, respectively

    Nucleosomes in pancreatic cancer patients during radiochemotherapy

    Get PDF
    Nucleosomes appear spontaneously in elevated concentrations in the serum of patients with malignant diseases as well as during chemo- and radiotherapy. We analyzed whether their kinetics show typical characteristics during radiochemotherapy and enable an early estimation of therapy efficacy. We used the Cell Death Detection Elisaplus ( Roche Diagnostics) and investigated the course of nucleosomes in the serum of 32 patients with a local stage of pancreatic cancer who were treated with radiochemotherapy for several weeks. Ten of them received postsurgical therapy, 21 received primary therapy and 1 received therapy for local relapse. Blood was taken before the beginning of therapy, daily during the first week, once weekly during the following weeks and at the end of radiochemotherapy. The response to therapy was defined according to the kinetics of CA 19-9: a decrease of CA 19-9 650% after radiochemotherapy was considered as `remission'; an increase of >= 100% ( which was confirmed by two following values) was defined as `progression'. Patients with `stable disease' ranged intermediately. Most of the examined patients showed a decrease of the concentration of nucleosomes within 6 h after the first dose of radiation. Afterwards, nucleosome levels increased rapidly, reaching their maximum during the following days. Patients receiving postsurgery, primary or relapse therapies did not show significant differences in nucleosome values during the time of treatment. Single nucleosome values, measured at 6, 24 and 48 h after the application of therapy, could not discriminate significantly between patients with no progression and those with progression of disease. However, the area under the curve of the first 3 days, which integrated all variables of the initial therapeutic phase, showed a significant correlation with the progression-free interval ( p = 0.008). Our results indicate that the area under the curve of nucleosomes during the initial phase of radiochemotherapy could be valuable for the early prediction of the progression-free interval. Copyright (C) 2005 S. Karger AG, Basel

    Gld2 activity is regulated by phosphorylation in the N-terminal domain

    Get PDF
    The de-regulation of microRNAs (miRNAs) is associated with multiple human diseases, yet cellular mechanisms governing miRNA abundance remain largely elusive. Human miR-122 is required for Hepatitis C proliferation, and low miR-122 abundance is associated with hepatic cancer. The adenylyltransferase Gld2 catalyses the post-transcriptional addition of a single adenine residue (A + 1) to the 3Êč-end of miR-122, enhancing its stability. Gld2 activity is inhibited by binding to the Hepatitis C virus core protein during HepC infection, but no other mechanisms of Gld2 regulation are known. We found that Gld2 activity is regulated by site-specific phosphorylation in its disordered N-terminal domain. We identified two phosphorylation sites (S62, S110) where phosphomimetic substitutions increased Gld2 activity and one site (S116) that markedly reduced activity. Using mass spectrometry, we confirmed that HEK 293 cells readily phosphorylate the N-terminus of Gld2. We identified protein kinase A (PKA) and protein kinase B (Akt1) as the kinases that site-specifically phosphorylate Gld2 at S116, abolishing Gld2-mediated nucleotide addition. The data demonstrate a novel phosphorylation-dependent mechanism to regulate Gld2 activity, revealing tumour suppressor miRNAs as a previously unknown target of Akt1-dependent signalling
    • 

    corecore