3,261 research outputs found

    Competition between Kondo screening and quantum Hall edge reconstruction

    Get PDF
    We report on a Kondo correlated quantum dot connected to two-dimensional leads where we demonstrate the renormalization of the g-factor in the pure Zeeman case i.e, for magnetic fields parallel to the plane of the quantum dot. For the same system we study the influence of orbital effects by investigating the quantum Hall regime i.e. a perpendicular magnetic field is applied. In this case an unusual behaviour of the suppression of the Kondo effect and of the split zero-bias anomaly is observed. The splitting decreases with magnetic field and shows discontinuous changes which are attributed to the intricate interplay between Kondo screening and the quantum Hall edge structure originating from electrostatic screening. This edge structure made up of compressible and incompressible stripes strongly affects the Kondo temperature of the quantum dot and thereby influences the renormalized g-factor

    Why do gallium clusters have a higher melting point than the bulk?

    Get PDF
    Density functional molecular dynamical simulations have been performed on Ga17_{17} and Ga13_{13} clusters to understand the recently observed higher-than-bulk melting temperatures in small gallium clusters [Breaux {\em et al.}, Phys. Rev. Lett. {\bf 91}, 215508 (2003)]. The specific-heat curve, calculated with the multiple-histogram technique, shows the melting temperature to be well above the bulk melting point of 303 K, viz. around 650 K and 1400 K for Ga17_{17} and Ga13_{13}, respectively. The higher-than-bulk melting temperatures are attributed mainly to the covalent bonding in these clusters, in contrast with the covalent-metallic bonding in the bulk.Comment: 4 pages, including 6 figures. accepted for publication in Phys. Rev. Let

    Long period polytype boundaries in silicon carbide

    Get PDF
    A significant gap in our understanding of polytypism exists, caused partly by the lack of experimental data on the spatial distribution of polytype coalescence and knowledge of the regions between adjoining polytypes. Few observations, Takei & Francombe (1967) apart, of the relative location of different polytypes have been reported. A phenomenological description of the boundaries, exact position of one-dimensional disorder (1DD) and long period polytypes (LPP’s) has been made possible by synchrotron X-ray diffraction topography (XRDT)

    Early transitions and tertiary enrolment: The cumulative impact of primary and secondary effects on entering university in Germany

    Full text link
    Our aim is to assess how the number of working class students entering German universities can effectively be increased. Therefore, we estimate the proportion of students from the working class that would successfully enter university if certain policy interventions were in place to eliminate primary effects (performance differentials between social classes) and/or secondary effects (choice differentials net of performance) at different transition points. We extend previous research by analysing the sequence of transitions between elementary school enrolment and university enrolment and by accounting for the impact that manipulations at earlier transitions have on the performance distribution and size of the student ‘risk-set’ at subsequent transitions. To this end, we develop a novel simulation procedure which also seeks to find viable solutions to the shortcomings in the German data landscape. Our findings show that interventions are most effective if they take place early in the educational career. Neutralizing secondary effects at the transition to upper secondary school proves to be the single most effective means to increase participation rates in tertiary education among working class students. However, this comes at the expense of lower average performance levels. (DIPF/author

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure

    A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 106 km2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106 km2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system

    Effect of Electron Correlation on the Bragg Reflection

    Full text link
    We study the effect of correlation on the Bragg reflection in the 3D electron gas, the 1D Luttinger liquid, and the 1D Hubbard model in an alternating periodic potential at half-filling. In the last system, we suggest a Luttinger-liquid-type quasi-metallic state in the crossover region from the band insulator to the Mott insulator. We explain the appearance of this state in terms of the incompatibility of the Bragg reflection with the concept of Luttinger liquids.Comment: 4 pages, 3 figure

    Size--sensitive melting characteristics of gallium clusters: Comparison of Experiment and Theory for Ga17+_{17}{}^{+} and Ga20+_{20}{}^{+}

    Get PDF
    Experiments and simulations have been performed to examine the finite-temperature behavior of Ga17+_{17}{}^{+} and Ga20+_{20}{}^{+} clusters. Specific heats and average collision cross sections have been measured as a function of temperature, and the results compared to simulations performed using first principles Density--Functional Molecular--Dynamics. The experimental results show that while Ga17+_{17}{}^{+} apparently undergoes a solid--liquid transition without a significant peak in the specific--heat, Ga20+_{20}{}^{+} melts with a relatively sharp peak. Our analysis of the computational results indicate a strong correlation between the ground--state geometry and the finite--temperature behavior of the cluster. If the ground--state geometry is symmetric and "ordered" the cluster is found to have a distinct peak in the specific--heat. However, if the ground--state geometry is amorphous or "disordered" the cluster melts without a peak in the specific--heat.Comment: 6 figure

    Total energy differences between SiC polytypes revisited

    Full text link
    The total energy differences between various SiC polytypes (3C, 6H, 4H, 2H, 15R and 9R) were calculated using the full-potential linear muffin-tin orbital method using the Perdew-Wang-(91) generalized gradient approximation to the exchange-correlation functional in the density functional method. Numerical convergence versus k-point sampling and basis set completeness are demonstrated to be better than 1 meV/atom. The parameters of several generalized anisotropic next-nearest-neighbor Ising models are extracted and their significance and consequences for epitaxial growth are discussed.Comment: 8 pages, 3 figures, Latex, uses epsfig and revte

    Reconstruction Mechanism of FCC Transition-Metal (001) Surfaces

    Full text link
    The reconstruction mechanism of (001) fcc transition metal surfaces is investigated using a full-potential all-electron electronic structure method within density-functional theory. Total-energy supercell calculations confirm the experimental finding that a close-packed quasi-hexagonal overlayer reconstruction is possible for the late 5dd-metals Ir, Pt, and Au, while it is disfavoured in the isovalent 4dd metals (Rh, Pd, Ag). The reconstructive behaviour is driven by the tensile surface stress of the unreconstructed surfaces; the stress is significantly larger in the 5dd metals than in 4dd ones, and only in the former case it overcomes the substrate resistance to the required geometric rearrangement. It is shown that the surface stress for these systems is due to dd charge depletion from the surface layer, and that the cause of the 4th-to-5th row stress difference is the importance of relativistic effects in the 5dd series.Comment: RevTeX 3.0, 12 pages, 1 PostScript figure available upon request] 23 May 199
    corecore