2,757 research outputs found

    Direct evaluation of pure graph state entanglement

    Full text link
    We address the question of quantifying entanglement in pure graph states. Evaluation of multipartite entanglement measures is extremely hard for most pure quantum states. In this paper we demonstrate how solving one problem in graph theory, namely the identification of maximum independent set, allows us to evaluate three multipartite entanglement measures for pure graph states. We construct the minimal linear decomposition into product states for a large group of pure graph states, allowing us to evaluate the Schmidt measure. Furthermore we show that computation of distance-like measures such as relative entropy of entanglement and geometric measure becomes tractable for these states by explicit construction of closest separable and closest product states respectively. We show how these separable states can be described using stabiliser formalism as well as PEPs-like construction. Finally we discuss the way in which introducing noise to the system can optimally destroy entanglement.Comment: 23 pages, 9 figure

    Cell culture–based production of defective interfering influenza A virus particles in perfusion mode using an alternating tangential flow filtration system

    Get PDF
    Respiratory diseases including influenza A virus (IAV) infections represent a major threat to human health. While the development of a vaccine requires a lot of time, a fast countermeasure could be the use of defective interfering particles (DIPs) for antiviral therapy. IAV DIPs are usually characterized by a large internal deletion in one viral RNA segment. Consequentially, DIPs can only propagate in presence of infectious standard viruses (STVs), compensating the missing gene function. Here, they interfere with and suppress the STV replication and might act “universally” against many IAV subtypes. We recently reported a production system for purely clonal DIPs utilizing genetically modified cells. In the present study, we established an automated perfusion process for production of a DIP, called DI244, using an alternating tangential flow filtration (ATF) system for cell retention. Viable cell concentrations and DIP titers more than 10 times higher than for a previously reported batch cultivation were observed. Furthermore, we investigated a novel tubular cell retention device for its potential for continuous virus harvesting into the permeate. Very comparable performances to typically used hollow fiber membranes were found during the cell growth phase. During the virus replication phase, the tubular membrane, in contrast to the hollow fiber membrane, allowed 100% of the produced virus particles to pass through. To our knowledge, this is the first time a continuous virus harvest was shown for a membrane-based perfusion process. Overall, the process established offers interesting possibilities for advanced process integration strategies for next-generation virus particle and virus vector manufacturing. Key points • An automated perfusion process for production of IAV DIPs was established. • DIP titers of 7.40E + 9 plaque forming units per mL were reached. • A novel tubular cell retention device enabled continuous virus harvesting. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00253-021-11561-y

    Myanmar Climate-Smart Agriculture Strategy

    Get PDF
    Myanmar has committed to apply CSA to contribute to regional food security and environmental protection during the 24th ASEAN Summit on May 10, 2014. The Myanmar CSA strategy encompasses the development of technical, policy and investment conditions to achieve a sustainable agricultural development for food security and nutrition through climate-resilient and sustainable agriculture. Myanmar’s CSA strategy aims to be socially, culturally and politically appropriate, environment-friendly and economically feasible to promote and attain sustainable agriculture, food security and nutrition, agricultural development and climate change adaptation and mitigation. Myanmar’s CSA strategy also aims to provide context and analysis for addressing agriculture in international climate negotiations to better inform climate negotiators and other stakeholders by identifying options and unpacking issues of interest

    Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2_2

    Full text link
    The selective excitation of coherent phonons provides unique capabilities to control fundamental properties of quantum materials on ultrafast time scales. For instance, in the presence of strong electron-phonon coupling, the electronic band structure can become substantially modulated. Recently, it was predicted that by this means even topologically protected states of matter can be manipulated and, ultimately, be destroyed: For the layered transition metal dichalcogenide Td-WTe2_2, pairs of Weyl points are expected to annihilate as an interlayer shear mode drives the crystalline structure towards a centrosymmetric phase. By monitoring the changes in the electronic structure of Td-WTe2_2 with femtosecond resolution, we provide here direct experimental evidence that the coherent excitation of the shear mode acts on the electronic states near the Weyl points. Band structure data in comparison with our results imply, furthermore, the periodic reduction in the spin splitting of bands near the Fermi energy, a distinct electronic signature of the non-centrosymmetric Td ground state of WTe2_2. The comparison with higher-frequency coherent phonon modes finally proves the shear mode-selectivity of the observed changes in the electronic structure. Our real-time observations reveal direct experimental insights into electronic processes that are of vital importance for a coherent phonon-induced topological phase transition in Td-WTe2_2.Comment: 28 pages, 17 figure

    Damselfishes alleviate the impacts of sediments on host corals

    Get PDF
    Mutualisms play a critical role in ecological communities; however, the importance and prevalence of mutualistic associations can be modified by external stressors. On coral reefs, elevated sediment deposition can be a major stressor reducing the health of corals and reef resilience. Here, we investigated the influence of severe sedimentation on the mutualistic relationship between small damselfishes (Pomacentrus moluccensis and Dascyllus aruanus) and their coral host (Pocillopora damicornis). In an aquarium experiment, corals were exposed to sedimentation rates of approximately 100 mg cm−2 d−1, with and without fishes present, to test whether: (i) fishes influence the accumulation of sediments on coral hosts, and (ii) fishes moderate partial colony mortality and/or coral tissue condition. Colonies with fishes accumulated much less sediment compared with colonies without fishes, and this effect was strongest for colonies with D. aruanus (fivefold less sediment than controls) as opposed to P. moluccensis (twofold less sediment than controls). Colonies with symbiont fishes also had up to 10-fold less sediment-induced partial mortality, as well as higher chlorophyll and protein concentrations. These results demonstrate that fish mutualisms vary in the strength of their benefits, and indicate that some mutualistic or facilitative interactions might become more important for species health and resilience at high-stress levels

    Evolution of the most recent common ancestor of a population with no selection

    Full text link
    We consider the evolution of a population of fixed size with no selection. The number of generations GG to reach the first common ancestor evolves in time. This evolution can be described by a simple Markov process which allows one to calculate several characteristics of the time dependence of GG. We also study how GG is correlated to the genetic diversity.Comment: 21 pages, 10 figures, uses RevTex4 and feynmf.sty Corrections : introduction and conclusion rewritten, references adde

    Observation of Individual Josephson Vortices in YBCO Bicrystal Grain-boundary Junctions

    Full text link
    The response of YBCO bicrystal grain-boundary junctions to small dc magnetic fields (0 - 10 Oe) has been probed with a low-power microwave (rf) signal of 4.4 GHz in a microwave-resonator setup. Peaks in the microwave loss at certain dc magnetic fields are observed that result from individual Josephson vortices penetrating into the grain-boundary junctions under study. The system is modeled as a long Josephson junction described by the sine-Gordon equation with the appropriate boundary conditions. Excellent quantitative agreement between the experimental data and the model has been obtained. Hysteresis effect of dc magnetic field is also studied and the results of measurement and calculation are compared.Comment: 11 pages, 4 figure

    Scaling behavior of fBf_{B} with NRQCD

    Get PDF
    We investigate the scaling behavior of the BB meson decay constant fBf_B and fBsf_{B_{s}} at β\beta==5.7,5.9,6.15.7, 5.9, 6.1, employing the NRQCD heavy quark action and the clover light quark action. Mixing effect from dimension-4 operator in the heavy-light axial-vector current is studied, and we find that the aa dependence of fBf_B is significantly reduced. Our preliminary result for the decay constants in the quenched approximation is fBf_{B}==162(18+35)162(^{+35}_{-18}) MeV, fBsf_{B_{s}}==190(19+40)190(^{+40}_{-19}) MeV, and fBs/fBf_{B_{s}}/f_{B}==1.18(6+6)1.18(^{+6}_{-6}).Comment: LATTICE98(matrixelement), 3 pages, 3 eps figure

    Nociceptin/Orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons

    Get PDF
    The Nociceptin/Orphanin FQ peptide receptor (NOP), activated by its endogenous peptide ligand Nociceptin/Orphanin FQ (N/OFQ), exerts several effects including modulation of pain signalling. We have examined, for the first time, the tissue distribution of the NOP receptor in clinical visceral and somatic pain disorders by immunohistochemistry, and assessed functional effects of NOP and [micro] opioid receptor activation in cultured human and rat dorsal root ganglion (DRG) neurons. Quantification of NOP-positive nerve fibres within the bladder sub-urothelium revealed a remarkable several-fold increase in Detrusor Overactivity (p<0.0001) and Painful Bladder Syndrome patient specimens (p=0.0014), compared to controls. In post-mortem control human DRGs, 75-80% of small/medium neurons (<=50 [micro]m diameter) in the lumbar (somatic) and sacral (visceral) DRG were positive for NOP, and fewer large neurons; avulsion-injured cervical human DRG neurons showed similar numbers. NOP-immunoreactivity was significantly decreased in injured peripheral nerves (p=0.0004), and also in painful neuromas (p=0.025). Calcium imaging studies in cultured rat DRG neurons demonstrated dose-dependent inhibition of capsaicin responses in the presence of N/OFQ, with an IC50 of 8.6 pM. In cultured human DRG neurons, 32% inhibition of capsaicin responses was observed in the presence of 1 pM N/OFQ (p<0.001). The maximum inhibition of capsaicin responses was greater with N/OFQ than [mu]-opioid receptor agonist DAMGO. Our findings highlight the potential of NOP agonists, particularly in urinary bladder overactivity and pain syndromes. The regulation of NOP expression in visceral and somatic sensory neurons by target-derived neurotrophic factors deserves further study, and the efficacy of NOP selective agonists in clinical trials
    corecore