47 research outputs found

    High resolution neurochemical gold staining method for myelin in peripheral and central nervous system at the light- and electron-microscopic level

    Get PDF
    Myelin is a multilamellar membrane structure primarily composed of lipids and myelin proteins essential for proper neuronal function. Since myelin is a target structure involved in many pathophysiological conditions such as metabolic, viral, and autoimmune diseases and genetic myelin disorders, a reliable myelin detection technique is required that is equally suitable for light- and electron-microscopic analysis. Here, we report that single myelinated fibers are specifically stained by the gold phosphate complex, Black gold, which stains myelin in the brain, spinal cord, and peripheral nerve fibers in a reliable manner. Electron-microscopic and morphometric analyses have revealed that gold particles are equally distributed in the inner, compact, and outer myelin layers. In contrast to Luxol fast blue, the gold dye stains proteinase-sensitive myelin structures, indicating its selective labeling of myelin-specific proteins. Aiming at defining the target of gold staining, we performed staining in several mouse myelin mutants. Gold complex distribution and myelin staining in MBP−/−/shiverer mouse mutants was comparable with that seen in wild-type mice but revealed a more clustered Black gold distribution. This gold staining method thus provides a sensitive and specific high-resolution marker for both central and peripheral myelin sheaths; it also allows the quantitative analysis of myelinated fibers at the light- and electron-microscopic level suitable for investigations of myelin and axonal disorder

    Involvement of GPR17 in Neuronal Fibre Outgrowth

    Get PDF
    Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growthpromoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration

    Modulation of electrically evoked acetylcholine release in cultured rat septal neurones

    Get PDF
    The electrically evoked release of acetylcholine and its modulation via auto- and heteroreceptors were studied in primary cell cultures prepared from embryonic rat septum (ED 17). Cultures were grown for 1, 2 or 3 weeks on circular, poly D-lysine-coated glass coverslips. They developed a dense network of non-neuronal and neuronal cells, only some of which were immunopositive for choline acetyltransferase. To measure acetylcholine release, the cells on the coverslips were pre-incubated with [3H]choline (0.1 micromol/L), superfused with modified Krebs-Henseleit buffer at 25 degrees C and electrically stimulated twice for 2 min (S1, S2; 3 Hz, 0.5 ms, 90-100 mA). The electrically evoked overflow of [3H] from the cells consisted of approximately 80% of authentic [3H]Ach, was largely Ca2+-dependent and tetrodotoxin sensitive, and hence represents an action potential-evoked, exocytotic release of acetylcholine. Using pairs of selective agonists and antagonist added before S2, muscarinic autoreceptors, as well as inhibitory adenosine A1- and opioid mu-receptors, could be detected, whereas delta-opioid receptors were not found. Evoked [3H] overflow from cultures grown for 1 week, although Ca2+ dependent and tetrodotoxin sensitive, was insensitive to the muscarinic agonist oxotremorine, whereas the effect of oxotremorine on cells grown for 3 weeks was even more pronounced than that in 2-week-old cultures. In conclusion, similar to observations on rat septal tissue in vivo, acetylcholine release from septal cholinergic neurones grown in vitro is inhibited via muscarinic, adenosine A1 and mu-opioid receptors. This in vitro model may prove useful in the exploration of regulatory mechanisms underlying the expression of release modulating receptors on septal cholinergic neurones

    Further evidence for the neuroplastic role of cannabinoids: a study in organotypic hippocampal slice cultures

    Get PDF
    Endocannabinoid receptors CB1R and CB2R are present in the CNS and modulate synaptic activity. By using an in vitro model, two concentrations of CB1R agonist ACEA at 0.5 and 5 μM doses and CB1R antagonist AM251 at 1 and 10 μM doses were administered in organotypic slice cultures of mouse hippocampus, and their effects on neurons and glial cells were analyzed at different time points. Exposure to low concentrations of ACEA (0.5 μM) did not seem to affect tissue organization, neuronal morphology, or glial response. In contrast, at a higher concentration of ACEA, many neurons in the dentate gyrus exhibited strong caspase-3 immunoreactivity. After treatment with AM251, we observed an increase in caspase-3 immunoreactivity and a downregulation of CB1R expression. Results show that long-term hippocampal slice cultures respond to both CB1R activation and inactivation by changing neuronal protein expression patterns. In the present study, we demonstrate that CB1R agonist ACEA promotes alterations in the neuronal cytoskeleton as well as changes in CB1R expression in organotypic hippocampal slice cultures, and that CB1R antagonist AM251 promotes neuronal death and astroglial reaction.Fil: Caltana, Laura Romina. University of Freiburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Heimrich, Bernd. University of Freiburg; AlemaniaFil: Brusco, Herminia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin

    Borna Disease Virus Replication in Organotypic Hippocampal Slice Cultures from Rats Results in Selective Damage of Dentate Granule Cells

    No full text
    In the hippocampus of Borna disease virus (BDV)-infected newborn rats, dentate granule cells undergo progressive cell death. BDV is noncytolytic, and the pathogenesis of this neurodevelopmental damage in the absence of immunopathology remains unclear. A suitable model system to study early events of the pathology is lacking. We show here that organotypic hippocampal slice cultures from newborn rat pups are a suitable ex vivo model to examine BDV neuropathogenesis. After challenging hippocampal slice cultures with BDV, we observed a progressive loss of calbindin-positive granule cells 21 to 28 days postinfection. This loss was accompanied by reduced numbers of mossy fiber boutons when compared to mock-infected cultures. Similarly, the density of dentate granule cell axons, the mossy fiber axons, appeared to be substantially reduced. In contrast, hilar mossy cells and pyramidal neurons survived, although BDV was detectable in these cells. Despite infection of dentate granule cells 2 weeks postinfection, the axonal projections of these cells and the synaptic connectivity patterns were comparable to those in mock-infected cultures, suggesting that BDV-induced damage of granule cells is a postmaturation event that starts after mossy fiber synapses are formed. In summary, we find that BDV infection of rat organotypic hippocampal slice cultures results in selective neuronal damage similar to that observed with infected newborn rats and is therefore a suitable model to study BDV-induced pathology in the hippocampus

    High resolution neurochemical gold staining method for myelin in peripheral and central nervous system at the light- and electron-microscopic level

    Full text link
    Myelin is a multilamellar membrane structure primarily composed of lipids and myelin proteins essential for proper neuronal function. Since myelin is a target structure involved in many pathophysiological conditions such as metabolic, viral, and autoimmune diseases and genetic myelin disorders, a reliable myelin detection technique is required that is equally suitable for light- and electron-microscopic analysis. Here, we report that single myelinated fibers are specifically stained by the gold phosphate complex, Black gold, which stains myelin in the brain, spinal cord, and peripheral nerve fibers in a reliable manner. Electron-microscopic and morphometric analyses have revealed that gold particles are equally distributed in the inner, compact, and outer myelin layers. In contrast to Luxol fast blue, the gold dye stains proteinase-sensitive myelin structures, indicating its selective labeling of myelin-specific proteins. Aiming at defining the target of gold staining, we performed staining in several mouse myelin mutants. Gold complex distribution and myelin staining in MBP−/−/shiverer mouse mutants was comparable with that seen in wild-type mice but revealed a more clustered Black gold distribution. This gold staining method thus provides a sensitive and specific high-resolution marker for both central and peripheral myelin sheaths; it also allows the quantitative analysis of myelinated fibers at the light- and electron-microscopic level suitable for investigations of myelin and axonal disorder
    corecore