147 research outputs found

    The future of European Nephrology 'Guidelines' - a declaration of intent by European Renal Best Practice (ERBP)

    Get PDF
    The disparities of medical practice, together with a growing number of possible interventions, have increased the demand for well-conceived guidance for practitioners [1]. However, this development is hampered by the number and quality of scientific studies that test medical hypotheses, which are often unsatisfactory. This is especially true in nephrology, where well-conducted controlled trials are rare [2]. Because patients with renal failure are generally excluded from controlled studies in the general population [3], the development of sufficiently well-founded guidance in nephrology has always been difficult. With the development of European Best Practice Guidelines (EBPG), the European Renal Association–European Dialysis and Transplantation Association (ERA–EDTA) has created its own guidance-generating process. Similar initiatives have also arisen in the USA (Kidney Disease Outcome Initiative—K/DOQI), Australia (Caring for Australasians with Renal Impairment—CARI), Canada (Canadian Society of Nephrology—CSN), the UK (United Kingdom Renal Association—UKRA), as well as at several other locations around the world. These institutions have generated a plethora of often parallel recommendations on similar topics but sometimes with different messages [4]. The question can be asked: ‘Is there still a place for an institution generating European nephrology guidance?’ If there is, how should such an initiative be managed to conform with current demands? To answer these questions, the Council of ERA–EDTA set up a commission that convened three times in the course of 2008–09. The present text is a distillation of the discussions, reflections and final conclusions of this commission. It is an ad hoc document, reflecting the current status. In the future, concepts and attitudes might change, as medical thinking is influenced by changes in practice, needs, general philosophy, ethics and political/financial conditions

    Mercury in the Black Sea:New Insights From Measurements and Numerical Modeling

    Get PDF
    Redox conditions and organic matter control marine methylmercury (MeHg) production. The Black Sea is the world's largest and deepest anoxic basin and is thus ideal to study Hg species along the extended redox gradient. Here we present new dissolved Hg and MeHg data from the 2013 GEOTRACES MEDBlack cruise (GN04_leg2) that we integrated into a numerical 1-D model, to track the fate and dynamics of Hg and MeHg. Contrary to a previous study, our new data show highest MeHg concentrations in the permanently anoxic waters. Observed MeHg/Hg percentage (range 9-57%) in the anoxic waters is comparable to other subsurface maxima in oxic open-ocean waters. With the modeling we tested for various Hg methylation and demethylation scenarios along the redox gradient. The results show that Hg methylation must occur in the anoxic waters. The model was then used to simulate the time evolution (1850-2050) of Hg species in the Black Sea. Our findings quantify (1) inputs and outputs of Hg-T (similar to 31 and similar to 28 kmol yr(-1)) and MeHgT (similar to 5 and similar to 4 kmol yr(-1)) to the basin, (2) the extent of net demethylation occurring in oxic (similar to 1 kmol yr(-1)) and suboxic water (similar to 6 kmol yr(-1)), (3) and the net Hg methylation in the anoxic waters of the Black Sea (similar to 11 kmol yr(-1)). The model was also used to estimate the amount of anthropogenic Hg (85-93%) in the Black Sea

    Why do physicians prescribe dialysis? A prospective questionnaire study

    Get PDF
    Funding Information: This study was supported by an unrestricted grant 14CECPDEU1001 from Baxter Healthcare International. Baxter Novum is the result of a grant from Baxter Healthcare Corporation to Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, to support research activities at Karolinska Institutet to promote the understanding and treatment of renal disease. Bengt Lindholm is employed by Baxter Healthcare Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This does not alter our adherence to PLOS ONE policies on sharing data and materials. Publisher Copyright: © 2017 Heaf et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.Introduction.The incidence of unplanned dialysis initiation (DI) with consequent increased comorbidity, mortality and reduced modality choice remains high, but the optimal timing of dialysis initiation (DI) remains controversial, and there is a lack of studies of specific reasons for DI. We investigated why and when physicians prescribe dialysis and hypothesized that physician motivation for DI is an independent factor which may have clinical consequences. Methods In the Peridialysis study, an ongoing multicenter prospective study assessing the causes and timing of DI and consequences of unplanned dialysis, physicians in 11 hospitals were asked to describe their primary, secondary and further reasons for prescribing DI. The stated reasons for DI were analyzed in relation to clinical and biochemical data at DI, and characteristics of physicians. Results In 446 patients (median age 67 years; 38% females; diabetes 25.6%), DI was prescribed by 84 doctors who stated 23 different primary reasons for DI. The primary indication was clinical in 63% and biochemical in 37%; 23% started for life-threatening conditions. Reduced renal function accounted for only 19% of primary reasons for DI but was a primary or contributing reason in 69%. The eGFR at DI was 7.2 ±3.4 ml/min/1.73 m2, but varied according to comorbidity and cause of DI. Patients with cachexia, anorexia and pulmonary stasis (34% with heart failure) had the highest eGFR (8.2–9.8 ml/min/1.73 m2), and those with edema, “low GFR”, and acidosis, the lowest (4.6–6.1 ml/min/1.73 m2). Patients with multiple comorbidity including diabetes started at a high eGFR (8.7 ml/min/1.73 m2). Physician experience played a role in dialysis prescription. Non-specialists were more likely to prescribe dialysis for life-threatening conditions, while older and more experienced physicians were more likely to start dialysis for clinical reasons, and at a lower eGFR. Female doctors started dialysis at a higher eGFR than males (8.0 vs. 7.1 ml/min/1.73 m2). Conclusions DI was prescribed mainly based on clinical reasons in accordance with current recommendations while low renal function accounted for only 19% of primary reasons for DI. There are considerable differences in physicians´ stated motivations for DI, related to their age, clinical experience and interpretation of biochemical variables. These differences may be an independent factor in the clinical treatment of patients, with consequences for the risk of unplanned DI.publishersversionPeer reviewe

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore