2,529 research outputs found

    Neutron activation of natural zinc samples at kT = 25 keV

    Full text link
    The neutron-capture cross sections of 64Zn, 68Zn, and 70Zn have been measured with the activation technique in a quasistellar neutron spectrum corresponding to a thermal energy of kT = 25 keV. By a series of repeated irradiations with different experimental conditions, an uncertainty of 3% could be achieved for the 64Zn(n,g)65Zn cross section and for the partial cross section 68Zn(n,g)69Zn-m feeding the isomeric state in 69Zn. For the partial cross sections 70Zn(n,g)71Zn-m and 70Zn(n,g)71Zn-g, which had not been measured so far, uncertainties of only 16% and 6% could be reached because of limited counting statistics and decay intensities. Compared to previous measurements on 64,68Zn, the uncertainties could be significantly improved, while the 70Zn cross section was found to be two times smaller than existing model calculations. From these results Maxwellian average cross sections were determined between 5 and 100 keV. Additionally, the beta-decay half-life of 71Zn-m could be determined with significantly improved accuracy. The consequences of these data have been studied by network calculations for convective core He burning and convective shell C burning in massive stars

    Stellar neutron capture cross sections of ⁴¹K and ⁴⁵Sc

    Get PDF
    The neutron capture cross sections of light nuclei (

    Stellar neutron capture cross sections of ²⁰ ²¹ ²²Ne

    Get PDF
    The stellar (n,γ) cross sections of the Ne isotopes are important for a number of astrophysical quests, i.e., for the interpretation of abundance patterns in presolar material or with respect to the s-process neutron balance in red giant stars. This paper presents resonance studies of experimental data in the keV range, which had not been fully analyzed before. The analyses were carried out with the R-matrix code sammy. With these results for the resonant part and by adding the components due to direct radiative capture, improved Maxwellian-averaged cross sections (MACS) could be determined. At kT=30keV thermal energy we obtain MACS values of 240±29,1263±160, and 53.2±2.7 μbarn for ²⁰Ne,²¹Ne, and ²²Ne, respectively. In earlier work the stellar rates of ²⁰Ne and ²¹Ne had been grossly overestimated. ²²Ne and ²⁰Ne are significant neutron poisons for the s process in stars because their very small MACS values are compensated by their large abundances

    Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst

    Get PDF
    © 2017 A green, rapid and continuous hydrothermal flow synthesis (CHFS) route has been employed to synthesise highly efficient and active novel heterogeneous catalysts. Tin doped zirconia (Zr–Sn–O) and tin doped zirconia/graphene nanocomposite (Zr–Sn/GO) have been assessed as suitable heterogeneous catalysts for the synthesis of dimethyl carbonate (DMC). The catalysts have been extensively characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area measurement and X-ray photoelectron spectroscopy (XPS) analysis. Extensive batch studies for the synthesis of DMC via the transesterification of propylene carbonate (PC) and methanol (MeOH) using Zr–Sn/GO catalyst in a solvent free process were also conducted. The effect of various reaction conditions such as reactant molar ratio, catalyst loading, reaction temperature and reaction time has been extensively evaluated. Response surface methodology based on Box-Behneken Design (BBD) was employed to derive optimum conditions for maximising PC conversion and DMC yield. The correlations and interactions between various variables such as MeOH:PC ratio, catalyst loading, reaction temperature, reaction time and stirring speed were extensively studied. A quadratic model by multiple regression analysis for the PC conversion and DMC yield was developed and verified by several methods BBD revealed that optimum conditions for high yield values of DMC are 12.33:1 MeOH:PC molar ratio, 446.7 K, 4.08 h and 300 rpm using 2.9% (w/w) Zr–Sn/GO nanocomposite. The maximum predicted responses at the optimum conditions are 85.1% and 81% for PC conversion and yield of DMC respectively. Experimental results at optimum model predicted reaction conditions agree very well with the model predicted response, where 82.4% PC conversion and 78.2% yield of DMC were obtained. Catalyst reusability and stability studies have been conducted at optimum reaction condition to investigate the long term stability of Zr–Sn/GO and it has been found that the catalyst could be reused more than six times (about 42 h) without losing its catalytic activity. These experimental and model predicted values showed an excellent agreement for tin doped zirconia/graphene nanocomposite as a heterogeneous catalyst for the synthesis of DMC from PC and MeOH

    The 14C(n,g) cross section between 10 keV and 1 MeV

    Get PDF
    The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,g) reaction is also important for the validation of the Coulomb dissociation method, where the (n,g) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to 800 keV

    Experimental study of fragmentation products in the reactions 112Sn + 112Sn and 124Sn + 124Sn at 1 AGeV

    Full text link
    Production cross-sections and longitudinal velocity distributions of the projectile-like residues produced in the reactions 112Sn + 112Sn and 124Sn + 124Sn both at an incident beam energy of 1 AGeV were measured with the high-resolution magnetic spectrometer, the Fragment Separator (FRS) of GSI. For both reactions the characteristics of the velocity distributions and nuclide production cross sections were determined for residues with atomic number Z \geq 10. A comparison of the results of the two reactions is presented.Comment: 14 pages, 12 figure

    Nucleosynthesis in the Early Galaxy

    Full text link
    Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements Z47Z\leq47. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-poor stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities nn1013n_{n}\leq10^{13} cm3cm^{-3} or in the range nn1024n_{n}\geq10^{24} cm3cm^{-3} best explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical Journa
    corecore