6,265 research outputs found
Power-Colours: Simple X-ray Binary Variability Comparison
We demonstrate a new method of variability classification using observations
of black hole X-ray binaries. Using `power colours' -- ratios of integrated
power in different Fourier frequency bands -- we can clearly differentiate
different canonical black hole states as the objects evolve during outburst. We
analyse (~ 2400) Rossi X-ray Timing Explorer observations of 12 transient low
mass black hole X-ray binaries and find that the path taken around the power
colour-colour diagram as the sources evolve is highly consistent from object to
object. We discuss how the consistency observed in the power colour-colour
diagram between different objects allows for easy state classification based on
only a few observations, and show how the power-spectral shapes can be simply
classified using a single parameter, the power-spectral `hue'. To illustrate
the benefits of our simple model-independent approach, we show that the
persistent high mass X-ray binary Cyg X-1 shows very similar power-spectral
evolution to the transient black hole sources, with the main difference being
caused by a combination of a lack of quasi-periodic oscillations and an excess
of low-frequency power-law noise in the Cyg X-1 power spectra during the
transitional state. We also compare the transient objects to the neutron star
atoll source Aquila X-1, demonstrating that it traces a different path in the
power colour-colour plot. Thus, power-colours could be an effective method to
classify newly discovered X-ray binaries.Comment: 13 pages, 9 figures, accepted by MNRA
The linear rms-flux relation in an Ultraluminous X-ray Source
We report the first detection of a linear correlation between rms variability
amplitude and flux in the Ultraluminous X-ray source NGC 5408 X-1. The rms-flux
relation has previously been observed in several Galactic black hole X-ray
binaries (BHBs), several Active Galactic Nuclei (AGN) and at least one neutron
star X-ray binary. This result supports the hypothesis that a linear rms-flux
relation is common to all luminous black hole accretion and perhaps even a
fundamental property of accretion flows about compact objects. We also show for
the first time the cross-spectral properties of the variability of this ULX,
comparing variations below and above 1 keV. The coherence and time delays are
poorly constrained but consistent with high coherence between the two bands,
over most of the observable frequency range, and a significant time delay (with
hard leading soft variations). The magnitude and frequency dependence of the
lags are broadly consistent with those commonly observed in BHBs, but the
direction of the lag is reversed. These results indicate that ULX variability
studies, using long X-ray observations, hold great promise for constraining the
processes driving ULXs behaviour, and the position of ULXs in the scheme of
black hole accretion from BHBs to AGN.Comment: 4 Pages, 3 figures, accepted for publication by MNRAS
Inclination-dependent spectral and timing properties in transient black hole X-ray binaries
We use a simple one-dimensional parameterisation of timing properties to show
that hard and hard-intermediate state transient black hole X-ray binaries with
the same power-spectral shape have systematically harder X-ray power-law
emission in higher-inclination systems. We also show that the power-spectral
shape and amplitude of the broadband noise (with low-frequency quasi-periodic
oscillations, QPOs, removed) is independent of inclination, confirming that it
is well-correlated with the intrinsic structure of the emitting regions and
that the "type C" QPO, which is inclination-dependent, has a different origin
to the noise, probably geometric. Our findings suggest that the power-law
emission originates in a corona which is flattened in the plane of the disc,
and not in a jet-like structure which would lead to softer spectra at higher
inclinations. However, there is tentative evidence that the
inclination-dependence of spectral shape breaks down deeper into the hard
state. This suggests either a change in the coronal geometry and possible
evidence for contribution from jet emission, or alternatively an even more
optically thin flow in these states.Comment: 6 Pages, 4 Figures, accepted as a Letter by MNRA
Quasi-Periodic Oscillations in Short Recurring Bursts of the magnetars SGR 1806-20 and SGR 1900+14 Observed With RXTE
Quasi-periodic oscillations (QPOs) observed in the giant flares of magnetars
are of particular interest due to their potential to open up a window into the
neutron star interior via neutron star asteroseismology. However, only three
giant flares have been observed. We therefore make use of the much larger data
set of shorter, less energetic recurrent bursts. Here, we report on a search
for QPOs in a large data set of bursts from the two most burst-active
magnetars, SGR 1806-20 and SGR 1900+14, observed with the Rossi X-ray Timing
Explorer (RXTE). We find a single detection in an averaged periodogram
comprising 30 bursts from SGR 1806-20, with a frequency of 57 Hz and a width of
5 Hz, remarkably similar to a giant flare QPO observed from SGR 1900+14. This
QPO fits naturally within the framework of global magneto-elastic torsional
oscillations employed to explain the giant flare QPOs. Additionally, we uncover
a limit on the applicability of Fourier analysis for light curves with low
background count rates and strong variability on short timescales. In this
regime, standard Fourier methodology and more sophisticated Fourier analyses
fail in equal parts by yielding an unacceptably large number of false positive
detections. This problem is not straightforward to solve in the Fourier domain.
Instead, we show how simulations of light curves can offer a viable solution
for QPO searches in these light curves.Comment: accepted for publication in ApJ; 12 pages, 7 figures; code +
instructions at https://github.com/dhuppenkothen/MagnetarQPOSearchPaper ;
associated data products at
http://figshare.com/articles/SGR_1900_14_RXTE_Data/1184101 (SGR 1900+14) and
http://figshare.com/articles/SGR_1806_20_Bursts_RXTE_data_set/1184427 (SGR
1806-20
A Spallation Model for the Titanium-rich Supernova Remnant Cassiopeia A
Titanium-rich subluminous supernovae are rare and challenge current SN
nucleosynthesis models. We present a model in which ejecta from a standard
Supernova is impacted by a second explosion of the neutron star (a Quark-nova),
resulting in spallation reactions that lead to 56Ni destruction and 44Ti
creation under the right conditions. Basic calculations of the spallation
products shows that a delay between the two explosions of ~ 5 days reproduces
the observed abundance of 44Ti in Cas A and explains its low luminosity as a
result of the destruction of 56Ni. Our results could have important
implications for lightcurves of subluminous as well as superluminous
supernovae.Comment: Accepted/to be published in Physical Review Letters. [ for more info
on the Quark Nova, see: http://quarknova.ucalgary.ca/
Ultrasensitive 3He magnetometer for measurements of high magnetic fields
We describe a 3He magnetometer capable to measure high magnetic fields (B >
0.1 Tesla) with a relative accuracy of better than 10^-12. Our approach is
based on the measurement of the free induction decay of gaseous, nuclear spin
polarized 3He following a resonant radio frequency pulse excitation. The
measurement sensitivity can be attributed to the long coherent spin precession
time T2* being of order minutes which is achieved for spherical sample cells in
the regime of motional narrowing where the disturbing influence of field
inhomogeneities is strongly suppressed. The 3He gas is spin polarized in-situ
using a new, non-standard variant of the metastability exchange optical
pumping. We show that miniaturization helps to increase T2* further and that
the measurement sensitivity is not significantly affected by temporal field
fluctuations of order 10^-4.Comment: 27 pages, 7 figure
- …
