12 research outputs found

    Initial Stage of Molecular Adsorption on Si(100) and H-terminated Si(100) Investigated by UHV-STM(STM-Si(001))

    Get PDF
    We have investigated the initial stage of adsorption of a conjugated aromatic compound, 1, 4-bis[ÎČ-pyridyl-(2)-vinyl]benzene (P2VB), on the clean Si(100)-2×1 surface and the hydrogen terminated Si(100)-2×1-H surface by ultra-high-vacuum (UHV) scanning tunneling microscopy (STM). We found adsorbed molecules cannot migrate on the chemically active Si(100)-2×1 surface, while they can migrate on the chemically inactive hydrogen terminated Si(100)-2×1-H surface until they are trapped to hydrogen-missing dangling bonds. On the clean Si(100)-2×1, we observed four different adsorption directions. An individual molecule appears as two or three bright spots, the brightness and distance between bright spots varying for different cases. Through structural analysis and bias-voltage-dependent STM images, we conclude that the electronic states of Si dimers modulated by the adsorbed molecules are observed instead of the molecules themselves. A simple estimation by considering only the molecular size and shape reproduces the distribution of four different kinds of adsorption structures we observed

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    Iridium-Catalyzed Enantioselective Transfer Hydrogenation of Ketones Controlled by Alcohol Hydrogen-Bonding and sp(3)-C-H Noncovalent Interactions

    Get PDF
    Iridium-catalyzed enantioselective transfer hydrogenation of ketones with formic acid was developed using a prolinol-phosphine chiral ligand. Cooperative action of the iridium atom and the ligand through alcohol-alkoxide interconversion is crucial to facilitate the transfer hydrogenation. Various ketones including alkyl aryl ketones, ketoesters, and an aryl heteroaryl ketone were competent substrates. An attractive feature of this catalysis is efficient discrimination between the alkyl and aryl substituents of the ketones, promoting hydrogenation with the identical sense of enantioselection regardless of steric demand of the alkyl substituent and thus resulting in a rare case of highly enantioselective transfer hydrogenation of tert-alkyl aryl ketones. Quantum chemical calculations revealed that the sp(3)-C-H/pi interaction between an sp(3)-C-H bond of the prolinol-phosphine ligand and the aryl substituent of the ketone is crucial for the enantioselection in combination with O-H center dot center dot center dot O/sp(3)-C-H center dot center dot center dot O two-point hydrogen-bonding between the chiral ligand and carbonyl group

    2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales

    No full text
    In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV
    corecore