356 research outputs found

    Prospects of long-time-series observations from Dome C for transit search

    Full text link
    The detection of transiting extrasolar planets requires high-photometric quality and long-duration photometric stellar time-series. In this paper, we investigate the advantages provided by the Antarctic observing platform Dome C for planet transit detections during its long winter period, which allows for relatively long, uninterrupted time-series. Our calculations include limiting effects due to the Sun and Moon, cloud coverage and the effect of reduced photometric quality for high extinction of target fields. We compare the potential for long time-series from Dome C with a single site in Chile, a three-site low-latitude network as well as combinations of Dome C with Chile and the network, respectively. Dome C is one of the prime astronomical sites on Earth for obtaining uninterrupted long-duration observations in terms of prospects for a high observational duty cycle. The duty cycle of a project can, however, be significantly improved by integrating Dome C into a network of sites.Comment: 10 pages, 9 figures, accepted by PAS

    Results from the Exoplanet Search Programmes with BEST and TEST

    Full text link
    Thueringer Landessternwarte Tautenburg (TLS) has started to operate a small dedicated telescope - the Tautenburg Exoplanet Search Telescope (TEST) - searching for transits of extrasolar planets in photometric time series observations. In a joint effort with the Berlin Exoplanet Search Telescope (BEST) operated by the Institut fuer Planetenforschung of the "Deutsches Zentrum fuer Luft- und Raumfahrt (DLR)" at the Observatoire de Haute-Provence (OHP), France, two observing sites are used to optimise transit search. Here, we give a short overview of these systems and the data analysis. We describe a software pipeline that we have set up to identify transit events of extrasolar planets and variable stars in time series data from these and other telescopes, and report on some first results.Comment: 6 pages, 5 figures, contributed paper to the "Solar and Stellar Physics Through Eclipses" conference, eds. O. Demircan, S.O. Selam, B. Albayrak (Turkey, March 2006

    Experimental investigations of interactions between saltwater and ultramafic rocks in hydrothermal systems

    Get PDF
    Fluid circulation and serpentinization in ultramafic-hosted hydrothermal systems occurs mostly at slow- spreading mid-ocean ridges, where tectonic processes promote fluid ingress into the crust. This is a fundamental process that impacts transfer of energy and affects the chemical composition of both the ocean lithosphere and the hydrosphere. Experimental investigations of sulfide-bearing serpentinization systems can help further our understanding of the sulfide phase relations at temperature conditions relevant for natural systems. The purpose of the research presented in this dissertation is to simulate fluid-rock interactions in ultramafic-hosted systems and to investigate reaction pathways, hydrogen generation, elemental exchange during reaction progress between rock and fluid, and formation of alteration minerals. The focus lies on the activities of H2 (aq) and H2S (aq) and changes in the assemblages of Fe-Ni-S mineral phases, which had never been tested by experimental work prior to this study

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P2P\lesssim 2 days, planets with a radius Rp2RR_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2R\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2R\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 RR_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.306810.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.57150.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.550.21+0.241.55^{+0.24}_{-0.21} RR_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa

    The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters

    Full text link
    Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT spacebased survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh & Guterman et al. and a phenomenological correction was proposed. Here we tie the observed effect a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.Comment: MNRAS accepted. 5 pages, 3 figure

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius

    Get PDF
    We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language corrections; version sent to the printer w few upgrade
    corecore