159 research outputs found

    The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes

    Get PDF
    There is an increasing interest in using microRNAs (miRNA) as biomarkers in autoimmune diseases. They are easily accessible in many body fluids but it is controversial if they are circulating freely or are encapsulated in microvesicles, particularly exosomes. We investigated if the majority of miRNas in serum and saliva are free-circulating or concentrated in exosomes. Exosomes were isolated by ultracentrifugation from fresh and frozen human serum and saliva. The amount of selected miRNAs extracted from the exosomal pellet and the exosome-depleted serum and saliva was compared by quantitative RT-PCR. Some miRNAs tested are ubiquitously expressed, others were previously reported as biomarkers. We included miRNAs previously reported to be free circulating and some thought to be exosome specific. The purity of exosome fraction was confirmed by electronmicroscopy and western blot. The concentration of miRNAs was consistently higher in the exosome pellet compared to the exosome-depleted supernatant. We obtained the same results using an equal volume or equal amount of total RNA as input of the RT-qPCR. The concentration of miRNA in whole, unfractionated serum, was between the exosomal pellet and the exosome-depleted supernatant. Selected miRNAs, which were detectable in exosomes, were undetectable in whole serum and the exosome-depleted supernantant. Exosome isolation improves the sensitivity of miRNA amplification from human biologic fluids. Exosomal miRNA should be the starting point for early biomarker studies to reduce the probability of false negative results involving low abundance miRNAs that may be missed by using unfractionated serum or saliva

    HIV-1 is budded from CD4+ T lymphocytes independently of exosomes

    Get PDF
    The convergence of HIV-1 budding and exosome biogenesis at late endosomal compartments called multivesicular bodies has fueled the debate on whether HIV-1 is budded from its target cells and transmitted in the form of exosomes. The point of contention appears to primarily derive from the types of target cells in question and lack of a well-defined protocol to separate exosomes from HIV-1. In this study, we adapted and established a simplified protocol to define the relationship between HIV-1 production and exosome biogenesis. Importantly, we took advantage of the newly established protocol to unequivocally show that HIV-1 was produced from CD4+ T lymphocytes Jurkat cells independently of exosomes. Thus, this study not only presents a simplified way to obtain highly purified HIV-1 virions for identification of host proteins packaged into virions, but also provides a technical platform that can be employed to define the relationship between exosome biogenesis and budding of HIV-1 or other viruses and its contributions to viral pathogenesis

    Proteins from Avastin® (bevacizumab) Show Tyrosine Nitrations for which the Consequences Are Completely Unclear

    Get PDF
    Avastin® (bevacizumab) is a protein drug widely used for cancer treatment although its further use is questionable due to serious side effects reported. As no systematic proteomic study on posttranslational modifications (PTMs) was reported so far, it was the aim of the current study to use a gel-based proteomics method for determination of Avastin®-protein(s)

    The cost effectiveness of an early transition from hospital to nursing home for stroke patients: design of a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the incidence of stroke has increased, its impact on society has increased accordingly, while it continues to have a major impact on the individual. New strategies to further improve the quality, efficiency and logistics of stroke services are necessary. Early discharge from hospital to a nursing home with an adequate rehabilitation programme could help to optimise integrated care for stroke patients.</p> <p>The objective is to describe the design of a non-randomised comparative study evaluating early admission to a nursing home, with multidisciplinary assessment, for stroke patients. The study is comprised of an effect evaluation, an economic evaluation and a process evaluation.</p> <p>Methods/design</p> <p>The design involves a non-randomised comparative trial for two groups. Participants are followed for 6 months from the time of stroke. The intervention consists of a redesigned care pathway for stroke patients. In this care pathway, patients are discharged from hospital to a nursing home within 5 days, in comparison with 12 days in the usual situation. In the nursing home a structured assessment takes place, aimed at planning adequate rehabilitation. People in the control group receive the usual care. The main outcome measures of the effect evaluation are quality of life and daily functioning. In addition, an economic evaluation will be performed from a societal perspective. A process evaluation will be carried out to evaluate the feasibility of the intervention as well as the experiences and opinions of patients and professionals.</p> <p>Discussion</p> <p>The results of this study will provide information about the cost effectiveness of the intervention and its effects on clinical outcomes and quality of life. Relevant strengths and weaknesses of the study are addressed in this article.</p> <p>Trial registration</p> <p>Current Controlled Trails ISRCTN58135104</p

    Exosome-Related Multi-Pass Transmembrane Protein TSAP6 Is a Target of Rhomboid Protease RHBDD1-Induced Proteolysis

    Get PDF
    We have previously reported that rhomboid domain containing 1 (RHBDD1), a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6) as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6

    Nanostructural and Transcriptomic Analyses of Human Saliva Derived Exosomes

    Get PDF
    Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from human saliva and characterized their structural and transcriptome contents.Exosomes were purified by differential ultracentrifugation and identified by immunoelectron microscopy (EM), flow cytometry, and Western blot with CD63 and Alix antibodies. We then described the morphology, shape, size distribution, and density using atomic force microscopy (AFM). Microarray analysis revealed that 509 mRNA core transcripts are relatively stable and present in the exosomes. Exosomal mRNA stability was determined by detergent lysis with RNase A treatment. In vitro, fluorescently labeled saliva exosomes could communicate with human keratinocytes, transferring their genetic information to human oral keratinocytes to alter gene expression at a new location.Our findings are consistent with the hypothesis that exosomes shuttle RNA between cells and that the RNAs present in the exosomes may be a possible resource for disease diagnostics

    Plasma miRNA as Biomarkers for Assessment of Total-Body Radiation Exposure Dosimetry

    Get PDF
    The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures

    Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway independently of Akt phosphorylation

    Get PDF
    Background: Anoikis resistance is one of the abilities acquired along tumor progression. This characteristic is associated with metastasis development, since tumorigenic cells must survive independently of cell-matrix interactions in this process. in our laboratory, it was developed a murine melanocyte malignant transformation model associated with a sustained stressful condition. After subjecting melan-a melanocytes to 1, 2, 3 and 4 cycles of anchorage impediment, anoikis resistant cells were established and named 1C, 2C, 3C and 4C, respectively. These cells showed altered morphology and PMA independent cell growth, but were not tumorigenic, corresponding to pre-malignant cells. After limiting dilution of 4C pre-malignant cells, melanoma cell lines with different characteristics were obtained. Previous data from our group showed that increased Timp1 expression correlated with anoikis-resistant phenotype. Timp1 was shown to confer anchorage-independent growth capability to melan-a melanocytes and render melanoma cells more aggressive when injected into mice. However, the mechanisms involved in anoikis regulation by Timp1 in tumorigenic cells are not clear yet.Methods: the beta 1-integrin and Timp1 expression were evaluated by Western blotting and CD63 protein expression by flow cytometry using specific antibodies. To analyze the interaction among Timp1, CD63 and beta 1-integrin, immunoprecipitation assays were performed, anoikis resistance capability was evaluated in the presence or not of the PI3-K inhibitors, Wortmannin and LY294002. Relative expression of TIMP1 and CD63 in human metastatic melanoma cells was analyzed by real time PCR.Results: Differential association among Timp1, CD63 and beta 1-integrins was observed in melan-a melanocytes, 4C pre-malignant melanocytes and 4C11- and 4C11+ melanoma cells. Timp1 present in conditioned medium of melanoma cells rendered melan-a melanocytes anoikis-resistant through PI3-K signaling pathway independently of Akt activation. in human melanoma cell lines, in which TIMP1 and beta-1 integrin were also found to be interacting, TIMP1 and CD63 levels together was shown to correlate significantly with colony formation capacity.Conclusions: Our results show that Timp1 is assembled in a supramolecular complex containing CD63 and beta 1-integrins along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway, independently of Akt phosphorylation. in addition, our data point TIMP1, mainly together with CD63, as a potential biomarker of melanoma.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo, Dept Pharmacol, São Paulo, BrazilUniversidade Federal de São Paulo, Microbiol Immunol & Parasitol Dept, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biochem, São Paulo, BrazilLudwig Inst Canc Res, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Pharmacol, São Paulo, BrazilUniversidade Federal de São Paulo, Microbiol Immunol & Parasitol Dept, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biochem, São Paulo, BrazilFAPESP: 2011/12306-1FAPESP: 2010/18715-8CAPES: 2867/10Web of Scienc

    Topographical and Biological Evidence Revealed FTY720-Mediated Anergy-Polarization of Mouse Bone Marrow-Derived Dendritic Cells In Vitro

    Get PDF
    Abnormal inflammations are central therapeutic targets in numerous infectious and autoimmune diseases. Dendritic cells (DCs) are involved in these inflammations, serving as both antigen presenters and proinflammatory cytokine providers. As an immuno-suppressor applied to the therapies of multiple sclerosis and allograft transplantation, fingolimod (FTY720) was shown to affect DC migration and its crosstalk with T cells. We posit FTY720 can induce an anergy-polarized phenotype switch on DCs in vitro, especially upon endotoxic activation. A lipopolysaccharide (LPS)-induced mouse bone marrow-derived dendritic cell (BMDC) activation model was employed to test FTY720-induced phenotypic changes on immature and mature DCs. Specifically, methods for morphology, nanostructure, cytokine production, phagocytosis, endocytosis and specific antigen presentation studies were used. FTY720 induced significant alterations of surface markers, as well as decline of shape indices, cell volume, surface roughness in LPS-activated mature BMDCs. These phenotypic, morphological and topographical changes were accompanied by FTY720-mediated down-regulation of proinflammatory cytokines, including IL-6, TNF-α, IL-12 and MCP-1. Together with suppressed nitric oxide (NO) production and CCR7 transcription in FTY720-treated BMDCs with or without LPS activation, an inhibitory mechanism of NO and cytokine reciprocal activation was suggested. This implication was supported by the impaired phagocytotic, endocytotic and specific antigen presentation abilities observed in the FTY720-treated BMDCs. In conclusion, we demonstrated FTY720 can induce anergy-polarization in both immature and LPS-activated mature BMDCs. A possible mechanism is FTY720-mediated reciprocal suppression on the intrinsic activation pathway and cytokine production with endpoint exhibitions on phagocytosis, endocytosis, antigen presentation as well as cellular morphology and topography
    • …
    corecore