536 research outputs found

    Amoeba Techniques for Shape and Texture Analysis

    Full text link
    Morphological amoebas are image-adaptive structuring elements for morphological and other local image filters introduced by Lerallut et al. Their construction is based on combining spatial distance with contrast information into an image-dependent metric. Amoeba filters show interesting parallels to image filtering methods based on partial differential equations (PDEs), which can be confirmed by asymptotic equivalence results. In computing amoebas, graph structures are generated that hold information about local image texture. This paper reviews and summarises the work of the author and his coauthors on morphological amoebas, particularly their relations to PDE filters and texture analysis. It presents some extensions and points out directions for future investigation on the subject.Comment: 38 pages, 19 figures v2: minor corrections and rephrasing, Section 5 (pre-smoothing) extende

    Genomics of human longevity

    Get PDF
    In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences

    Mathematical morphology on tensor data using the Loewner ordering

    Get PDF
    The notions of maximum and minimum are the key to the powerful tools of greyscale morphology. Unfortunately these notions do not carry over directly to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this paper extends the maximum and minimum operation to the tensor-valued setting. This provides the ground to establish matrix-valued analogues of the basic morphological operations ranging from erosion/dilation to top hats. In contrast to former attempts to develop a morphological machinery for matrices, the novel definitions of maximal/minimal matrices depend continuously on the input data, a property crucial for the construction of morphological derivatives such as the Beucher gradient or a morphological Laplacian. These definitions are rotationally invariant and preserve positive semidefiniteness of matrix fields as they are encountered in DT-MRI data. The morphological operations resulting from a component-wise maximum/minimum of the matrix channels disregarding their strong correlation fail to be rotational invariant. Experiments on DT-MRI images as well as on indefinite matrix data illustrate the properties and performance of our morphological operators

    Hierarchical characterization of complex networks

    Full text link
    While the majority of approaches to the characterization of complex networks has relied on measurements considering only the immediate neighborhood of each network node, valuable information about the network topological properties can be obtained by considering further neighborhoods. The current work discusses on how the concepts of hierarchical node degree and hierarchical clustering coefficient (introduced in cond-mat/0408076), complemented by new hierarchical measurements, can be used in order to obtain a powerful set of topological features of complex networks. The interpretation of such measurements is discussed, including an analytical study of the hierarchical node degree for random networks, and the potential of the suggested measurements for the characterization of complex networks is illustrated with respect to simulations of random, scale-free and regular network models as well as real data (airports, proteins and word associations). The enhanced characterization of the connectivity provided by the set of hierarchical measurements also allows the use of agglomerative clustering methods in order to obtain taxonomies of relationships between nodes in a network, a possibility which is also illustrated in the current article.Comment: 19 pages, 23 figure

    Quality of life in couples living with Huntington’s disease: the role of patients’ and partners’ illness perceptions

    Get PDF
    Research suggests that chronically ill patients and their partners perceive illness differently, and that these differences have a negative impact on patients’ quality of life (QoL). This study assessed whether illness perceptions of patients with Huntington’s disease (HD) differ from those of their partners, and examined whether spousal illness perceptions are important for the QoL of the couples (n = 51 couples). Partners reported that their HD-patient spouses suffered more symptoms and experienced less control than the patients themselves reported. Illness perceptions of patients and partners correlated significantly with patient QoL. Partners’ beliefs in a long duration of the patients’ illness and less belief in cure, were associated with patient vitality scores. Suggestions for future research emphasize the importance of qualitative research approaches in combination with cognitive-behavioural approaches

    Genetic Linkage and Association Analysis for Loneliness in Dutch Twin and Sibling Pairs Points to a Region on Chromosome 12q23–24

    Get PDF
    We obtained evidence from a large study in Dutch twins (N = 8387) and siblings (N = 2295) that variation in loneliness has a genetic component. The heritability estimate for loneliness, which was assessed as an ordinal trait, was 40% and did not differ between males and females. There were 682 sibling pairs with genotypic (around 400 microsatellite markers) data. We combined phenotypic and genotypic data to carry out a genome scan to localize QTLs for loneliness. One region on chromosome 12q23.3-24.3, showed near suggestive linkage. Genetic association tests within this region revealed significant association (p-value 0.009) with one of the alleles of marker D12S79 and with one of the alleles of neighbouring marker D12S395 (p-value 0.043). We review evidence for linkage in this region for psychiatric disorders and discuss our findings within this context. © 2006 Springer Science+Business Media, Inc
    corecore