172 research outputs found

    The circle of reentry: Characteristics of trigger-substrate interaction leading to sudden cardiac arrest

    Get PDF
    Sudden cardiac death is often caused by ventricular arrhythmias driven by reentry. Comprehensive characterization of the potential triggers and substrate in survivors of sudden cardiac arrest has provided insights into the trigger-substrate interaction leading to reentry. Previously, a “Triangle of Arrhythmogenesis”, reflecting interactions between substrate, trigger and modulating factors, has been proposed to reason about arrhythmia initiation. Here, we expand upon this concept by separating the trigger and substrate characteristics in their spatial and temporal components. This yields four key elements that are required for the initiation of reentry: local dispersion of excitability (e.g., the presence of steep repolarization time gradients), a critical relative size of the region of excitability and the region of inexcitability (e.g., a sufficiently large region with early repolarization), a trigger that originates at a time when some tissue is excitable and other tissue is inexcitable (e.g., an early premature complex), and which occurs from an excitable region (e.g., from a region with early repolarization). We discuss how these findings yield a new mechanistic framework for reasoning about reentry initiation, the “Circle of Reentry.” In a patient case of unexplained ventricular fibrillation, we then illustrate how a comprehensive clinical investigation of these trigger-substrate characteristics may help to understand the associated arrhythmia mechanism. We will also discuss how this reentry initiation concept may help to identify patients at risk, and how similar reasoning may apply to other reentrant arrhythmias

    Design of the FemCure study: prospective multicentre study on the transmission of genital and extra-genital Chlamydia trachomatis infections in women receiving routine care

    Get PDF
    BACKGROUND: In women, anorectal infections with Chlamydia trachomatis (CT) are about as common as genital CT, yet the anorectal site remains largely untested in routine care. Anorectal CT frequently co-occurs with genital CT and may thus often be treated co-incidentally. Nevertheless, post-treatment detection of CT at both anatomic sites has been demonstrated. It is unknown whether anorectal CT may play a role in post-treatment transmission. This study, called FemCure, in women who receive routine treatment (either azithromycin or doxycycline) aims to understand the post-treatment transmission of anorectal CT infections, i.e., from their male sexual partner(s) and from and to the genital region of the same woman. The secondary objective is to evaluate other reasons for CT detection by nucleic acid amplification techniques (NAAT) such as treatment failure, in order to inform guidelines to optimize CT control. METHODS: A multicentre prospective cohort study (FemCure) is set up in which genital and/or anorectal CT positive women (n = 400) will be recruited at three large Dutch STI clinics located in South Limburg, Amsterdam and Rotterdam. The women self-collect anorectal and vaginal swabs before treatment, and at the end of weeks 1, 2, 4, 6, 8, 10, and 12. Samples are tested for presence of CT-DNA (by NAAT), load (by quantitative polymerase chain reaction -PCR), viability (by culture and viability PCR) and CT type (by multilocus sequence typing). Sexual exposure is assessed by online self-administered questionnaires and by testing samples for Y chromosomal DNA. Using logistic regression models, the impact of two key factors (i.e., sexual exposure and alternate anatomic site of infection) on detection of anorectal and genital CT will be assessed. DISCUSSION: The FemCure study will provide insight in the role of anorectal chlamydia infection in maintaining the CT burden in the context of treatment, and it will provide practical recommendations to reduce avoidable transmission. Implications will improve care strategies that take account of anorectal CT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02694497

    The challenges of research data management in cardiovascular science: a DGK and DZHK position paper-executive summary

    Get PDF
    The sharing and documentation of cardiovascular research data are essential for efficient use and reuse of data, thereby aiding scientific transparency, accelerating the progress of cardiovascular research and healthcare, and contributing to the reproducibility of research results. However, challenges remain. This position paper, written on behalf of and approved by the German Cardiac Society and German Centre for Cardiovascular Research, summarizes our current understanding of the challenges in cardiovascular research data management (RDM). These challenges include lack of time, awareness, incentives, and funding for implementing effective RDM; lack of standardization in RDM processes; a need to better identify meaningful and actionable data among the increasing volume and complexity of data being acquired; and a lack of understanding of the legal aspects of data sharing. While several tools exist to increase the degree to which data are findable, accessible, interoperable, and reusable (FAIR), more work is needed to lower the threshold for effective RDM not just in cardiovascular research but in all biomedical research, with data sharing and reuse being factored in at every stage of the scientific process. A culture of open science with FAIR research data should be fostered through education and training of early-career and established research professionals. Ultimately, FAIR RDM requires permanent, long-term effort at all levels. If outcomes can be shown to be superior and to promote better (and better value) science, modern RDM will make a positive difference to cardiovascular science and practice. The full position paper is available in the supplementary materials

    Study protocol of the iMPaCT project : A longitudinal cohort study assessing psychological determinants, sexual behaviour and chlamydia (re)infections in heterosexual STI clinic visitors

    Get PDF
    Acknowledgements We are grateful to the staff at the STI clinics of Amsterdam, Kennemerland, Hollands Noorden, Twente, who are involved in the recruitment and data collection of participants, and Marlous Ratten and Klazien Visser from Soapoli-online, who are involved in the coordination of laboratory testing of the home-based sampling kits at six-month follow-up. We also thank the staff at the STI department at the National Institute for Public Health and the Environment, especially Birgit van Benthem. Funding This project is funded by the Strategic Programme (SPR) of the National Institute for Public Health and the Environment (RIVM) (project number S/113004/01/IP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Availability of data and materials The dataset (anonymised) generated during this study will be made available for interested parties on request.Peer reviewedPublisher PD

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
    corecore