20 research outputs found

    Modulation of Litter Decomposition by the Soil Microbial Food Web Under Influence of Land Use Change

    Get PDF
    Soil microbial communities modulate soil organic matter (SOM) dynamics by catalyzing litter decomposition. However, our understanding of how litter-derived carbon (C) flows through the microbial portion of the soil food web is far from comprehensive. This information is necessary to facilitate reliable predictions of soil C cycling and sequestration in response to a changing environment such as land use change in the form of agricultural abandonment. To examine the flow of litter-derived C through the soil microbial food web and it’s response to land use change, we carried out an incubation experiment with soils from six fields; three recently abandoned and three long term abandoned fields. In these soils, the fate of 13C-labeled plant litter was followed by analyzing phospholipid fatty acids (PLFA) over a period of 56 days. The litter-amended soils were sampled over time to measure 13CO2 and mineral N dynamics. Microbial 13C-incorporation patterns revealed a clear succession of microbial groups during litter decomposition. Fungi were first to incorporate 13C-label, followed by G− bacteria, G+ bacteria, actinomycetes and micro-fauna. The order in which various microbial groups responded to litter decomposition was similar across all the fields examined, with no clear distinction between recent and long-term abandoned soils. Although the microbial biomass was initially higher in long-term abandoned soils, the net amount of 13C-labeled litter that was incorporated by the soil microbial community was ultimately comparable between recent and long-term abandoned fields. In relative terms, this means there was a higher efficiency of litter-derived 13C-incorporation in recent abandoned soil microbial communities compared to long-term abandoned soils, most likely due to a net shift from SOM-derived C toward root-derived C input in the soil microbial food web following land-abandonment

    Snow cover manipulation effects on microbial community structure and soil chemistry in a mountain bog

    Get PDF
    Background and Aims: Alterations in snow cover driven by climate change may impact ecosystem functioning, including biogeochemistry and soil (microbial) processes. We elucidated the effects of snow cover manipulation (SCM) on above-and belowground processes in a temperate peatland. Methods: In a Swiss mountain-peatland we manipulated snow cover (addition, removal and control), and assessed the effects on Andromeda polifolia root enzyme activity, soil microbial community structure, and leaf tissue and soil biogeochemistry. Results: Reduced snow cover produced warmer soils in our experiment while increased snow cover kept soil temperatures close-to-freezing. SCM had a major influence on the microbial community, and prolonged ‘close-to-freezing' temperatures caused a shift in microbial communities toward fungal dominance. Soil temperature largely explained soil microbial structure, while other descriptors such as root enzyme activity and pore-water chemistry interacted less with the soil microbial communities. Conclusions: We envisage that SCM-driven changes in the microbial community composition could lead to substantial changes in trophic fluxes and associated ecosystem processes. Hence, we need to improve our understanding on the impact of frost and freeze-thaw cycles on the microbial food web and its implications for peatland ecosystem processes in a changing climate; in particular for the fate of the sequestered carbo

    Disentangling microbial decomposition networks : linking detritus-based soil microbial food webs to ecosystem processes

    No full text
    Soils are crucial for a large number of ecosystem services and occupy an important position in driving the Earth’s biogeochemical cycles. Soils are therefore essential for e.g. agricultural food production, carbon sequestration, water purification and nutrient cycling. These soil functions are to a large extent governed by the huge biodiversity of soil life, which can be depicted in the form of a soil food web: a model that describes the feeding relationships among groups of species that live in the soil. A number of soil ecosystem services, as governed by soil life, are currently under considerable threat due to e.g. soil degradation, atmospheric nitrogen deposition and land use change. A proper understanding of the mechanisms underlying soil ecosystem functioning, in relation to global change, is important to anticipate these threats and to help ensure optimal functioning of our soils. Soil food web models have proven to be highly useful in the study of the long-term consequences of environmental change on soil communities and associated ecosystem functioning. Perhaps the most important ecosystem process driven by the soil food web is the decomposition of detritus: plant residues and soil organic matter. Via the decomposition of detritus, soil organisms determine the critical balance between sequestration and mineralization of carbon (C) and nutrients, affecting soil CO2 emissions to the atmosphere and nutrient availability for plants. Soil microbes (bacteria, fungi and protozoa) play a very important role in the decomposition of detritus by being the first consuming trophic level and by making up more than 90% of the total belowground biomass. In this way, soil microbes are the main influencers of C and nitrogen (N) dynamics in soil. However, detailed information on the microbial processing of different types of organic substrates in soil food webs is still missing. Due to the important role of soil microbial communities in C and N cycling, this information is crucial to incorporate in soil food web models in order to study the long-term consequences of global change on ecosystem functioning. This is especially important if one wants to use this information for targeted management of soil life, which is seen as a promising management tool to target optimal soil functioning in anticipation of a changing world. The main research aim of this thesis was therefore to disentangle the soil microbial food web in relation to an important type of environmental change: land use change. In chapter 2, I start with discussing how state-of-the-art empirical techniques can be used to collect trophic information that is needed to construct different types of empirically-based food webs: connectedness webs, semi-quantitative webs, energy flow webs and functional webs. I explain what types of information is needed from molecular and biogeochemical studies to create such soil food web models. I thereby give a comprehensive overview of the available empirical techniques with respect to the type of information they can provide for soil food web models. In chapter 3, I study litter-derived C flows through the soil microbial food web in six different ex-arable soils. In a 56-day incubation experiment, I compared the fate of litter-derived C flows through the soil microbial communities of recent and long-term abandoned soils. Soils were amended with 13C-labelled plant litter and microbial C flows were studied by tracing the labelling of biomarkers in the form of Phospholipid Fatty Acids Stable Isotope Probing (PLFA-SIP). PLFA-SIP revealed that soil microbial communities are less efficient in decomposing litter-derived C in long-term compared to recently abandoned soils. The reduced efficiency of litter-derived C decomposition is most likely due to a net shift of organic matter-derived C to root-derived C input in relation to time since abandonment of agricultural practices. The study further revealed a clear succession of microbial decomposers, both in time and quantity that was similar across all examined fields: fungi > G- bacteria > G+ bacteria ≥ actinomycetes > micro-fauna. This information gives a first quantitative insight in how litter-derived C flows through the detritus-based soil microbial food web. In chapter 4, I continue assessing C flows through the soil microbial community in more detail, by tracing the fate of three contrasting types of organic substrates. The same set of ex-arable soils as examined in chapter 3 were incubated for 28 days after the addition of a mixture of glycine, cellulose and vanillin. In each of the treatments one or none of these compounds was 13C-labelled, to trace the fate of a specific organic compound. Application of both PLFA-SIP and RNA-SIP analyses allowed me to 1) quantify substrate-derived C flows through the soil microbial food web and 2) assess soil microbial resource partitioning beyond the concepts of the bacterial and fungal energy channels. The analyses revealed the emergence of a specific microbial community that deals with the decomposition of recalcitrant material in long-term abandoned soils. Furthermore, the existence of soil microbial decomposer succession was further confirmed by revealing both intra-kingdom microbial decomposer successional patterns and intra-kingdom microbial resource partitioning on the taxonomic level of fungal and bacterial classes. These results further enhance the view that the understanding of soil microbial decomposition goes beyond the concepts of bacterial and fungal energy channels. In chapter 5, I assess the effects of contrasting types of organic matter inputs on microbial biomass, activity and community structure, as well as related ecosystem processes like N mineralization, microbial N immobilization, plant growth and nutrient uptake. In a pot experiment, Brussels sprouts were grown on arable soils that were mixed with 15N-labelled mineral fertilizer and a contrasting type of organic amendments. The experiment revealed that a number of ecosystem processes were directly related to soil microbial activity, while microbial N immobilization was mostly dependent on the soil microbial community structure. These outcomes support the idea that soil microbial community structure is important to take into account when assessing the effects of the soil organic inputs on soil ecosystem functioning and can be used to design nutrient management strategies for more sustainable agriculture. In chapter 6, I study the drivers of both soil microbial community structure and function on two spatial scales (landscape and local scale). It is shown that these two soil microbial community characteristics are controlled by a distinct set of drivers at local versus landscape scale. I show that soil microbial community structure is driven on the landscape level by phosphorous related variables, whereas soil microbial functioning is driven locally through vegetation patterns. It is therefore important that management strategies consider the scale-dependent action of soil microbial community drivers and take both soil microbial community function and structure into account to target the desired biogeochemical functioning of soils. Overall, this thesis gives the first high-resolution and quantitative image of detritus-based microbial food webs as affected by land use change and advances our understanding of soil food webs. Studying soil microbial food webs in a chronosequence of ex-arable fields revealed that a good understanding of soil microbial C flows, beyond the level of bacterial and fungal energy channels, is crucial to understand the effect of land-abandonment on the functioning of soil food webs. A thorough understanding of intra-kingdom variation in soil microbial C processing is therefore of vital importance to enhance our understanding of soil microbial functioning in response to global change, which is the key to success for targeted management of soil life in a changing world

    Modulation of litter decomposition by the soil microbial food web under influence of land use change

    Get PDF
    Soil microbial communities modulate soil organic matter (SOM) dynamics by catalyzing litter decomposition. However, our understanding of how litter-derived carbon (C) flows through the microbial portion of the soil food web is far from comprehensive. This information is necessary to facilitate reliable predictions of soil C cycling and sequestration in response to a changing environment such as land use change in the form of agricultural abandonment. To examine the flow of litter-derived C through the soil microbial food web and it’s response to land use change, we carried out an incubation experiment with soils from six fields; three recently abandoned and three long term abandoned fields. In these soils, the fate of 13C-labeled plant litter was followed by analyzing phospholipid fatty acids (PLFA) over a period of 56 days. The litter-amended soils were sampled over time to measure 13CO2 and mineral N dynamics. Microbial 13C-incorporation patterns revealed a clear succession of microbial groups during litter decomposition. Fungi were first to incorporate 13C-label, followed by G- bacteria, G+ bacteria, actinomycetes and micro-fauna. The order in which various microbial groups responded to litter decomposition was similar across all the fields examined, with no clear distinction between recent and long-term abandoned soils. Although the microbial biomass was initially higher in long-term abandoned soils, the net amount of 13C-labeled litter that was incorporated by the soil microbial community was ultimately comparable between recent and long-term abandoned fields. In relative terms, this means there was a higher efficiency of litter-derived 13C-incorporation in recent abandoned soil microbial communities compared to long-term abandoned soils, most likely due to a net shift from SOM-derived C towards root-derived C input in the soil microbial food web following land-abandonment

    Modulation of litter decomposition by the soil microbial food web under influence of land use change

    No full text
    Soil microbial communities modulate soil organic matter (SOM) dynamics by catalyzing litter decomposition. However, our understanding of how litter-derived carbon (C) flows through the microbial portion of the soil food web is far from comprehensive. This information is necessary to facilitate reliable predictions of soil C cycling and sequestration in response to a changing environment such as land use change in the form of agricultural abandonment. To examine the flow of litter-derived C through the soil microbial food web and it’s response to land use change, we carried out an incubation experiment with soils from six fields; three recently abandoned and three long term abandoned fields. In these soils, the fate of 13C-labeled plant litter was followed by analyzing phospholipid fatty acids (PLFA) over a period of 56 days. The litter-amended soils were sampled over time to measure 13CO2 and mineral N dynamics. Microbial 13C-incorporation patterns revealed a clear succession of microbial groups during litter decomposition. Fungi were first to incorporate 13C-label, followed by G− bacteria, G+ bacteria, actinomycetes and micro-fauna. The order in which various microbial groups responded to litter decomposition was similar across all the fields examined, with no clear distinction between recent and long-term abandoned soils. Although the microbial biomass was initially higher in long-term abandoned soils, the net amount of 13C-labeled litter that was incorporated by the soil microbial community was ultimately comparable between recent and long-term abandoned fields. In relative terms, this means there was a higher efficiency of litter-derived 13C-incorporation in recent abandoned soil microbial communities compared to long-term abandoned soils, most likely due to a net shift from SOM-derived C toward root-derived C input in the soil microbial food web following land-abandonment.</p

    Local functioning, landscape structuring : Drivers of soil microbial community structure and function in peatlands

    Get PDF
    Agricultural peatlands are essential for a myriad of ecosystem functions and play an important role in the global carbon (C) cycle through C sequestration. Management of these agricultural peatlands takes place at different spatial scales, ranging from local to landscape management, and drivers of soil microbial community structure and function may be scale-dependent. Effective management for an optimal biogeochemical functioning thus requires knowledge of the drivers on soil microbial community structure and functioning, as well as the spatial scales upon which they are influenced. During two field campaigns, we examined the importance of different drivers (i.e., soil characteristics, nutrient management, vegetation composition) at two spatial scales (local vs. landscape) for, respectively, the soil microbial community structure (determined by PLFA) and soil microbial community functional capacity (as assessed by CLPP) in agricultural peatlands. First, we show by an analysis of PLFA profiles that the total microbial biomass changes with soil moisture and relative C:P nutrient availability. Secondly, we showed that soil communities are controlled by a distinct set of drivers at the local, as opposed to landscape, scale. Community structure was found to be markedly different between areas, in contrast to community function which showed high variability within areas. We further found that microbial structure appears to be controlled more at a landscape scale by nutrient-related variables, whereas microbial functional capacity is driven locally through plant community feedbacks. Optimal management strategies within such peatlands should therefore consider the scale-dependent action of soil microbial community drivers, for example by first optimizing microbial structure at the landscape scale by targeted areal management, and then optimizing soil microbial function by local vegetation management.</p

    Modulation of Litter Decomposition by the Soil Microbial Food Web Under Influence of Land Use Change

    No full text
    Soil microbial communities modulate soil organic matter (SOM) dynamics by catalyzing litter decomposition. However, our understanding of how litter-derived carbon (C) flows through the microbial portion of the soil food web is far from comprehensive. This information is necessary to facilitate reliable predictions of soil C cycling and sequestration in response to a changing environment such as land use change in the form of agricultural abandonment. To examine the flow of litter-derived C through the soil microbial food web and it's response to land use change, we carried out an incubation experiment with soils from six fields; three recently abandoned and three long term abandoned fields. In these soils, the fate of 13C-labeled plant litter was followed by analyzing phospholipid fatty acids (PLFA) over a period of 56 days. The litter-amended soils were sampled over time to measure 13CO2 and mineral N dynamics. Microbial 13C-incorporation patterns revealed a clear succession of microbial groups during litter decomposition. Fungi were first to incorporate 13C-label, followed by G- bacteria, G+ bacteria, actinomycetes and micro-fauna. The order in which various microbial groups responded to litter decomposition was similar across all the fields examined, with no clear distinction between recent and long-term abandoned soils. Although the microbial biomass was initially higher in long-term abandoned soils, the net amount of 13C-labeled litter that was incorporated by the soil microbial community was ultimately comparable between recent and long-term abandoned fields. In relative terms, this means there was a higher efficiency of litter-derived 13C-incorporation in recent abandoned soil microbial communities compared to long-term abandoned soils, most likely due to a net shift from SOM-derived C toward root-derived C input in the soil microbial food web following land-abandonment

    Empirical methods of identifying and quantifying trophic interactions for constructing soil food-web models

    No full text
    Introduction Food-web models, which depict the trophic relationships between organisms within a community, form a powerful and versatile approach to study the relationships between community structure and ecosystem functioning. Although food-web models have recently been applied to a wide range of ecological studies (Memmott, 2009; Sanders et al., 2014), such approaches can be greatly improved by introducing high-resolution trophic information from empirical studies and experiments that realistically describe topological structure and energy flows (de Ruiter et al., 2005). Over the last decades major technological advances have been made in empirically characterizing trophic networks by describing, in detail, the connectedness and flows in food webs. Existing empirical techniques, such as stable isotope probing (SIP) (Layman et al., 2012), have been refined and new approaches have been created by combining methods, e.g., combining Raman spectroscopy or fatty acid analysis with SIP (Ruess et al., 2005a; Li et al., 2013). These empirical methods can provide insight into different aspects of food webs and together form an extensive toolbox to investigate trophic interactions. It is crucial to recognize the potential and limitations of a range of empirical approaches in order to choose the right method in the design of empirically based food-web studies. Empirically based food webs are generally classified according to the type of input information that is required. In the following lines we will provide an overview of four types of food-web model: connectedness webs, semi-quantitative webs, energy-flow webs, and functional webs. Paine (1980) introduced three of those webs, which are widely accepted and applied in food-web studies across ecosystems. We propose to add a fourth type of empirically based food web, the semi-quantitative web. All of these food webs have the same basic structure, but the conceptual webs differ in the type of trophic information they describe and represent (Figure 16.1). Connectedness webs (Figure 16.1a) define the basic structure of a food web by describing the food-web connections per se.</p

    Modulation of litter decomposition by the soil microbial food web under influence of land use change

    No full text
    Soil microbial communities modulate soil organic matter (SOM) dynamics by catalyzing litter decomposition. However, our understanding of how litter-derived carbon (C) flows through the microbial portion of the soil food web is far from comprehensive. This information is necessary to facilitate reliable predictions of soil C cycling and sequestration in response to a changing environment such as land use change in the form of agricultural abandonment. To examine the flow of litter-derived C through the soil microbial food web and it’s response to land use change, we carried out an incubation experiment with soils from six fields; three recently abandoned and three long term abandoned fields. In these soils, the fate of 13C-labeled plant litter was followed by analyzing phospholipid fatty acids (PLFA) over a period of 56 days. The litter-amended soils were sampled over time to measure 13CO2 and mineral N dynamics. Microbial 13C-incorporation patterns revealed a clear succession of microbial groups during litter decomposition. Fungi were first to incorporate 13C-label, followed by G− bacteria, G+ bacteria, actinomycetes and micro-fauna. The order in which various microbial groups responded to litter decomposition was similar across all the fields examined, with no clear distinction between recent and long-term abandoned soils. Although the microbial biomass was initially higher in long-term abandoned soils, the net amount of 13C-labeled litter that was incorporated by the soil microbial community was ultimately comparable between recent and long-term abandoned fields. In relative terms, this means there was a higher efficiency of litter-derived 13C-incorporation in recent abandoned soil microbial communities compared to long-term abandoned soils, most likely due to a net shift from SOM-derived C toward root-derived C input in the soil microbial food web following land-abandonment.</p

    De invloed van media multitasking op het concentratievermogen van jongvolwassenen

    No full text
    Amber Heijboer (s2022353) Lydia Dubbeldam (s2021096) Britt Wieland (s2022121) Ayleen Bogaerd (s20246360) Ellis van der Meer (s2030692) Daisy Opmeer (s2024767
    corecore