7 research outputs found

    Temperature, inocula and substrate: contrasting electroactive consortia, diversity and performance in microbial fuel cells

    Get PDF
    The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5°C) versus cold (7.5°C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in determining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance, yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic efficiencies. Temperature had only a minor effect on power density, (Q10: 2 and 1.2 for acetate and wastewater respectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors were able to operate at low temperature with real wastewater without the need for specialised inocula; it is speculated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study did not act as direct model for cold wastewater fed systems. Application of this technology will encompass use of real wastewater at ambient temperatures

    Diffusive energy transport in the S=1 Haldane chain compound AgVP2S6

    Full text link
    We present the results of measurements of the thermal conductivity κ\kappa of the spin S=1 chain compound AgVP_2S_6 in the temperature range between 2 and 300 K and with the heat flow directed either along or perpendicular to the chain direction. The analysis of the anisotropy of the heat transport allowed for the identification of a small but non-negligible magnon contribution κm\kappa_m along the chains, superimposed on the dominant phonon contribution κph\kappa_ph. At temperatures above about 100 K the energy diffusion constant D_E(T), calculated from the κm(T)\kappa_m(T) data, exhibits similar features as the spin diffusion constant D_S(T), previously measured by NMR. In this regime, the behaviour of both transport parameters is consistent with a diffusion process that is caused by interactions inherent to one-dimensional S=1 spin systems.Comment: 6 pages, 4 figure

    Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system

    Get PDF
    © 2017 Ieropoulos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43-0.04 and 4.21-0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems

    From feast to famine; adaptation to nutrient availability in yeast

    No full text
    corecore