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The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical
systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of
inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5 °C) versus cold
(7.5 °C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in deter-
mining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity
than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance,
yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic effi-
ciencies. Temperature had only a minor effect on power density, (Q10: 2 and 1.2 for acetate and wastewater re-
spectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors
were able to operate at low temperaturewith realwastewaterwithout the need for specialised inocula; it is spec-
ulated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study
did not act as direct model for coldwastewater fed systems. Application of this technologywill encompass use of
real wastewater at ambient temperatures.
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1. Introduction

Bioelectrochemical Systems (BESs) are a suite of technologies that
exploit the ability of an anaerobic microbial community to donate elec-
trons from organic matter to a solid anode in an electrical circuit,
treating wastewater and generating a current. The formation of a pro-
ductive anode community able to digest waste organics and liberate
electrons is required for successful application. Although community as-
sembly is poorly understood in the microbial world in general and in
BES in particular [1] it might be reasonable to assume that it is affected
by both the temperature, substrate and inocula [2,3]. These have been
studied independentlywithin BES research, but not consolidatedwithin
one study where direct comparisons can be made.

Understanding the effects of temperature and feed will be vital for
the implementation of this technology. Although most of the putative
applications of BES anticipate using a feed composed of complex
waste organic matter at ambient temperatures [4], many studies
use an acetate feed at controlled and elevated temperatures (typically
~30 °C). These simplified conditions cannot be an accurate reflection
.
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of the real life scenarios BES technologies will have to work in to be
commercially viable.

Differences in reactor configurations and reporting methods make
direct comparison of the performance of wastewater and acetate feeds
in different studies difficult, yet wastewater fed reactors typically
produce lower power densities (PD) and Coulombic Efficiencies (CE)
than those fed with simple substrates [5,6]. In identical reactors, syn-
thetic complex wastewater produced half the power density of acetate
[7]. Furthermore, different substrates support very different anodic
microbial communities [8,9]. Understanding these differences, and
the relative contributions of the hydrolytic, fermentative and electro-
genic metabolic stages will be essential in reducing this performance
gap.

Studies on the effect of temperature on acetate fed reactors offer in-
sights into electrogenesis only; they have typically found that the max-
imum power output drops at lower temperatures [10–15]. Cheng et al.
[12] and Lu et al. [14] found convincing linear relationships (R2 N 0.99)
between temperature (from 4 to 30 °C) and performance: about
33 mW/m2/°C and 4 A/m3/°C implying Q10 temperature coefficient
values for electrogenesis of 1.5 and 2.0 for power and current respec-
tively. The Q10 value is a measure of the rate of change of a biological
or chemical system as a consequence of increasing the temperature by
10 °C.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Studies with more complex wastewaters suggest a degree of tem-
perature sensitivity that is slightly lower than that for electrogenesis.
Larrosa-Guerrero et al. [16] using a mixture of domestic and brewery
wastewater found an unequivocally linear relationship between tem-
perature and current density and a Q10 for power density of 1.6 Ahn
and Logan, [17] using domestic wastewater and Wang et al. [18] using
brewery wastewater, found a very modest change in performance
with temperature, observing Q10 values of 1.2 and 1.1 respectively
with a change from 30 to ~20 °C. The results of Larrosa-Guerro et al.
(2010) are more pertinent as wastewater temperatures in temperate
climates vary between 4 and 20 °C. Using domesticwastewater at ambi-
ent temperature in a pilot scale reactor with high overpotentials and
losses, Heidrich et al. observed that temperature did not have a statisti-
cally significant effect [19]. Interestingly, this makes BES compare
favourably with analogous studies in methanogenic systems where
Q10 values range from 2 to 4 [20] and temperature sensitivity can be
problematic.

The presence of effective electrogens in wastewater is low, in the
order of 17 cells per ml [21]. An appropriate choice of inoculum might
influence performance in general, and temperature sensitivity in partic-
ular. Thus, although wastewater itself is known to be a satisfactory
source of inoculum, soils, especially arctic soils, might be superior for
systems that are expected to function at low temperatures: soils are in-
herently more diverse than wastewater [22], and display significant an-
aerobic activity at low temperatures [23,24]. Geobacter species are
usually the dominant electrogens in acetate fed reactors [25]. However,
in wastewater fed reactors Geobacter are typically in a minority, though
some of the remaining community may be undiscovered electrogens,
non-electrogenic hydrolytic and fermentative organisms must also be
present and may be limiting [26,27].

Rather than simply looking at the presence of a single taxon such as
Geobacter, wider ecological parameters, such as diversity, may prove
more useful in understanding the link between performance in BES
and community structure. It is hypothesised that higher anode poten-
tials provide the bacteria with more energy and therefore lead to a
greater diversity, while low potentials allow only the most capable
electrogen, i.e. Geobacter [28], to colonise the anode. This would, some-
what counterintuitively, result in lower diversity where there is higher
current densities at low electrode potentials. Using 16S rDNA clone li-
brary construction and sequencing Torres et al., [28] have observed
higher diversity when higher anode potentials were imposed. Con-
versely Zhu et al. [29] have observed that diversity was not related to
imposed anode potentials when measured using 454 pyrosequencing.
Both studies used a simple single substrate, acetate, and their conclu-
sions focus on the dominance of Geobacter.Measures of diversitywithin
BES anode samples using DGGE analysis on glucose fed reactors have
been shown to correlate positively with power production, with greater
power coming from more diverse biofilms [30]. The idea that a wider
range of taxa can lead to a more efficient consumption of resource is
known as over-yielding and this phenomenon could conceivably affect
the performance of BES [31]. The diversity of the biofilm in a BES may
be critical to its performance, yet we do not have a conclusive link be-
tween the two.

The unprecedented number of sequences analysed per sample by
Next Generation Sequencing offers the opportunity to detect some of
the less dominant species in the community. However, these techniques
still only offer a partial view of diversity in a microbial system, and the
diversity observed is still typically a function of the number of se-
quences analysed [32]. These difficulties can be overcome using Bayes-
ian techniques that infer the underlying species abundance curves
which in turn can be used to estimate the total diversity of the sample
[33,34]. These techniques have the advantage of using a minimum in-
formation criteria that allows for the selection of the best fitting
model representing the estimated species abundance curves, whilst
also providing confidence intervals for these estimates. This approach
removes the effect of sampling depth on the diversity value so that
rational and informed comparisons can be made between samples.
Such techniques are still not widely appreciated even within microbial
ecology and have never been applied to BES.

This study presents a simple yet rigorous experiment to ex-
plore the link between microbial community diversity and BES
performance, and how the choice of inoculum, temperature and
substrate may affect this. The study focuses on one specific type
of BES, the Microbial Fuel Cell (MFC) [1,4–5]. There were two ex-
plicit hypotheses: firstly, the use of an arctic soil as an inoculum
would enhance the low temperature performance of an MFC rela-
tive to one started with a conventional inoculum. Secondly, the
communities in the acetate fed anode compartments of these
BESs would be a largely electrogenic subset of those found in the
wastewater fed reactor (thus the “excess” diversity found in the
wastewater fed reactors would be putative hydrolytic and fer-
mentative organisms). All reactor conditions were run in dupli-
cate. The impact of temperature, inoculum and substrate on the
microbial communities and total diversity within these reactors
was examined by 454 pyrosequencing.
2. Materials and methods

2.1. Experimental design

The variables examined were: temperature (warm 26.5 °C and cold
7.5 °C); substrate (acetate andwastewater); and inocula (Arctic soil and
wastewater). Duplicate reactors were run in parallel to test each of
these eight conditions. Once acclimated, the reactors were used to per-
form three feeding cycles and the performance data was monitored. At
the end of these cycles biofilm samples were taken for microbial
analysis.

The warm temperature was chosen to represent the typical labo-
ratory temperatures of many MFC studies. The cold temperature
represents the lower quartile of the temperatures experienced at a
pilot MEC reactor run at ambient temperatures on a wastewater
treatment site in the North of England (54°58′N, 01°36′W) [19].
The substrates were acetate, the most commonly used laboratory
feed, and sterilised real wastewater. The two different inocula
were raw influent wastewater also taken from this site, which has
been shown to contain 17 effective electrogens per ml [21], and Arc-
tic soil (see below) which could potentially havemore psychrophilic
bacteria.
2.2. Media and inocula

Autoclaved acetate media [35] containing 1 g/L sodium acetate was
compared to wastewater taken from the Cramlington wastewater treat-
ment site (Northumbrian Water Ltd., UK), which was UV sterilised prior
to use [20,21]. The cathode chamber was filled with 50 mMpH 7 sodium
phosphate buffer, conductivity 8.2mS/cm. The conductivity of the waste-
water was measured using an EC 300 (VWR Ltd., UK) as 1.98 mS/cm at
26.5 °C, and then equalised for the lower temperature and in the nutrient
media using phosphate buffer.

The raw wastewater was collected prior to any form of treatment,
and was of mixed industrial and domestic origin, COD 0.7–0.8 g/L.
Once collected the wastewater was stored at 4 °C in a closed container.
The Arctic soil was collected from Ny-Ålesund, Spitsbergen in Svalbard.
This was wrapped within three sealed bags, and kept cold in an ice box
whilst it was transported to the laboratory where it was stored at 4 °C
until used. The inocula of wastewater and soil were measured out to
5 mL or 5 g respectively before being added to the reactors. Samples
of each inoculum were preserved in a 50:50 in a mix of ethanol and
autoclaved phosphate buffer (1M, pH7) in the freezer at−20 °C formi-
crobial analysis.
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2.3. Reactor design and operation

A standard design of double chamber tubular MFC reactors (78 mL
each chamber) with an internal diameter of 40 mm and length of
60 mm were used [36]. The anode was a carbon felt anode (Ballard,
UK) with a surface area of 17.5 cm2, the cathode a 2.5 cm2 platinum
coated titanium mesh cathode with a surface area 8.13 cm2 (Tishop.
com, UK), in 1 M pH 7 phosphate buffer within the cathode chamber.
Both electrodes were attached to a stainless steel wire, and placed in a
circuit with a 470 Ω resistor, and a multimeter to measure the voltage
(Pico ADC-16, Pico Technology, UK). The resistor was chosen to gain a
balance between system performance and community development
[37]. The membrane between the reactor chambers was Nafion 117,
with an area of 12.6 cm2. Reactors were sparged with 99.99% pure N2

in the anode chamber, and air in the cathode chamber for 15 min after
every re-fill.

Four reactors were operated in a warm temperature incubator
(Stuart Scientific SI 50, UK) set at a temperature of 26.5 °C, the other
four reactors were operated in a low temperature incubator (Sanyo
MIR-254; Sanyo Biomedical, USA) set at 7.5 °C. The temperature was
logged continuously over the experiment using a EL-USB-1 temperature
data logger (Lascar Electronics, UK). The reactors were inoculated with
either the Artic soil or wastewater, and then filled with either the ace-
tate or sterile wastewater substrate. The substrate was replaced every
5–6 days until a stable power generation was achieved. The reactors
were then re-filled and three successive 3 day cycles were run logging
the voltage over this time. Chemical oxygen demand (COD) removal
during each batch was determined using standard methods (APHA,
1998) and Spectroquant ® test kits (Merck & Co. Inc., USA).

2.4. Microbiological techniques

At the end of each experiment a central 6.25mm2 section the anode
was removed from the chamber using aseptic technique and preserved
in a 50:50 mix of ethanol and autoclaved phosphate buffer (1 M, pH 7)
and stored in a freezer at−20 °C. The DNAwas extracted from the inoc-
ulum samples and anode samples using a FastDNA Spin Kit for Soil
(Qbiogene MP Biomedicals, UK). Extraction was completed as per the
manufacturer's instructions. The sampleswere then pyrosequenced fol-
lowing amplification of the 16 s rRNA gene fragments.

The primers used were F515 (GTGNCAGCMGCCGCGGTAA) and
R926 (CCGYCAAT-TYMTTTRAGTTT). Each sample was labelled with a
unique eight base pair (bp) barcode connected to a GA linker. Sequenc-
ing was completed from the Titanium A adaptor forward only, from the
F515, capturing theV4 region andmost of theV5 regionwith a Titanium
read of 400–500 bp. Triplicate PCR reactions were carried out using
the Roche FastStart HiFi reaction kit (Roche Diagnostics Ltd., UK) and
subject to the following optimised thermal cycles: initial denaturation
at 95 °C for 4min; 23 cycles of denaturation at 95 °C for 1min; annealing
at 55 °C for 45 s; extension at 72 °C for 1min; andfinal extension at 78 °C
for 8 min. An automated thermal cycle Techne TC-5000 (Bibby Scientif-
ic, UK) was used, the cycles were optimised to produce enough product
with the lowest number of cycles to reduce the impact of chimeras.

The triplicate sampleswere then pooled and cleaned using QIAquick
PCR Purification Kit (Qiagen, UK). The DNA concentration was quanti-
fied by UV–Vis spectrophotometry using a Nanodrop 2000 (Thermo
scientific, USA). The individual samples were pooled to give equal con-
centrations of all reactor samples, and double concentrations of the
wastewater and arctic soil inocula. Sequencing was carried out by the
Centre for Genomic Research (University of Liverpool, UK) using the
Roche 454 sequencing GS FLX Titanium Series.

2.5. Data analysis

The pyrosequencing data set was split as per the barcodes and unas-
signed sequenceswere removed. Theflowgramfileswere cleaned using
a filtering software Ampliconnoise Version 1.25 [34] to give the filtered
flowgramfile. Filtering at aminimumflowgram length of 360 bp includ-
ing the key and primer before the first noisy signal, all flowgrams were
then truncated to 360 bp. A pairwise distance matrix was then
calculated using the Pyronoise algorithm [34]. This uses an iterative
Expectation-Maximization algorithm which constructs denoised se-
quences by clustering flowgrams using the initial hierarchical clusters
generated in the previous step and the filtered flowgram file. The cut-
off for initial clustering was set at 0.01 and the cluster size was 60, as
recommended by Quince et al. [34]. The flowgramswere then denoised.

PCR errors were removed using the Seqnoise algorithm [34], gener-
ating a distance matrix by application of the Needleman-Wunsch algo-
rithm [38] for pairwise alignment. The optimal parameters used were:
the cut-off for initial clustering of 0.08, and cluster size of 30. Chimera
removal was completed using the Perseus algorithm [39] which for
each sequence searches for the closest chimeric match using the other
sequences as possible parents. The sequences are then classified and
the good classes filtered at a 50% probability of being chimeric, produc-
ing the final FASTA file which is denoised and chimera free ready for
downstream bioinformatics analysis.

A QIIME (v1.4.0) bioinformatics pipeline [40] was used to provide
the following analysis: taxonomy assignment using Greengenes
(http://greengenes.lbl.gov) at the 97% similarity level; Operational
Taxonomic Unit (OTU) table creation; classification using the RDP
classifier; summary of taxonomic data from classification; rarefaction
data generation of the diversity in a reactor; and calculation of the dif-
ferences between the reactors. The dissimilarity of the community
structure between duplicates was examined using both a weighted
(relative abundance) and unweighted (presence/absence) phylogenetic
diversity metrics using UniFrac, giving a distance matrix containing
a dissimilarity value for each pairwise comparison. The raw OTU table
generated was used to produce the species abundance pattern
(with the log abundance normalised to the number of sequences in
each sample) and the rank abundance curves, (where percentage abun-
dance is used to normalise samples). In total 19 samples were analysed.
The number of sequences per sample ranged from8112 to 77,436with a
total number of observations of 549,178.

An estimate of the total diversity for each sample was calculated
using a Bayesian modelling approach as described by Quince et al.
[33], where the ‘posterior distribution’ of the taxa area curve is estimat-
ed from the known distribution of the data gathered in the sequencing.
Three distributions are modelled: Log-normal; Inverse Gaussian; and
Sichel, and the Deviance Information Criterion (DIC), as described by
Spiegelhalter et al. [41] is used to compare the fit from each model.
The lower the deviance or DIC values the better the model fit and
those models within six of the best DIC values can be considered as a
plausible fit. Using the fitted abundance distributions, the sampling ef-
fort required to capture 90% of the taxa within that sample is estimated.

TheMinitab 15 (Minitab Inc., State College, USA) statistical software
was used to run analysis of variance (ANOVA) tests on the experimental
data, and t-tests on the distance matrix data for the sequences samples.
Datawere checked for normality prior to completingANOVA, and if nec-
essary the Box-Cox transformation was used. The performance of the
MFC reactors were analysed on the basis of three variables: % COD re-
moval; coulombic efficiency (CE); and power density (mW/m2).

3. Results

3.1. Reactor performance

All 16 reactors produced current. The cold reactors took a long time
to acclimatise, up to 840 h, compared to up to 280 h for the warm
reactors. However, once stable the reactors three successive feeding
cycles were performed and the results analysed (Table 1). Wastewater
fed reactors had a significantly higher COD removal and coulombic
efficiency than acetated fed reactors (p b 0.001 ANOVA), while their

http://Tishop.com
http://Tishop.com
http://greengenes.lbl.gov


Table 1
Performance data for each of the conditions tested, values represent duplicate reactors av-
eraged over three cycles, diversity estimates use the Log of the log normal diversity esti-
mate. ANOVA p values are given representing the statistical significance of the difference
between each of the factors.

Coulombic
efficiency (%)

Power density
(mV/m2)

COD
removal
(%)

Log diversity
estimate

Acetate feed 54.5 5.0 19.4 4.6
Wastewater feed 10.7 4.5 62.1 3.0
p value b0.001 0.880 b0.001 b0.001
Warm 31.7 6.3 45.9 3.6
Cold 33.4 3.1 38.2 4.1
p value 0.244 0.017 b0.001 0.157
Arctic soil inoculum 36.4 4.8 42.5 4.2
Wastewater inoculum 28.7 4.7 41.6 3.4
p value 0.009 0.556 0.690 0.036
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power densities were comparable. The acetate fed reactors had a
statistically significantly higher diversity than the wastewater fed reac-
tors (p b 0.001 ANOVA).

Temperature had a modest but statistically significant effect on COD
removal (p b 0.001 ANOVA) and a notable, but statistically insignificant
effect on power density. The high variance of power density (coefficient
of variance 17.3) within the acetate samples will have weakened the
power of the ANOVA in this study. The Q10 value for power density
with all the reactors combined was 1.7, when the different substrates
were considered the Q10 was 2 for acetate and 1.2 for wastewater.
Therewas no significant relationship between temperature and diversi-
ty. The choice of inoculum had little discernible effect on COD removal
or power density and only a modest effect on coulombic efficiency
and diversity.

There is an apparent correlation between the CE (positive) and COD
removal (negative) in the reactors with the Quince log normal diversity
estimates (p = 0.002, Spearman Rho correlation). However, this is due
to the large difference between the acetate andwastewater samples, i.e.
the acetate reactors have a high diversity, high CE and lowCOD removal.
When separated into the two substrate types, only the wastewater fed
reactors have a positive correlation between the Quince log normal di-
versity estimate with CE, (0.810, p = 0.015) and power density
(0.857, p = 0.007).
Fig. 1. 3D plot showing reactor performance in terms of Coulombic efficiency (CE), COD remov
WW is wastewater inoculum).
When all the performance criteria were combined the acetate and
wastewater fed reactors separated into two distinct groups (Fig. 1).

3.2. Microbial diversity

A species abundance curve plotted from the OTU table (SI) shows
that diversity was highest in the Arctic soil inoculum, then in thewaste-
water inoculum, and lowest in the reactors. The diversity in the reactors
fed acetate was higher than in those fed wastewater. This difference is
also observed with the Chao (p = 0.003) and Shannon (p = 0.000)
estimates.

A nested ANOVA on total diversity estimates also shows that the
acetate fed reactors have a significantly higher diversity than the
wastewater fed reactors irrespective of the model used (Log-normal
p = 0.001; Inverse Gaussian p = 0.000; and Sichel p = 0.027). Inoc-
ulum type and temperature have a secondary effect, but only when
the reactors are fed acetate (Fig. 2). The Arctic soil inoculum gives
rise to higher diversity than the wastewater inoculum (Log-normal
p = 0.006), and lower temperatures give higher diversity than
warmer ones (Log-normal p = 0.037).

3.3. Microbial community composition

Despite the different inocula used, the dominant microorganisms
found enriched within all reactors were Geobacter (Fig. 3). Within the
acetate fed reactors Geobacter accounted for on average 47% of the mi-
crobial population though this was highly variable (st. dev. 23%); in
the wastewater fed reactors this was 21% (st. dev. 10%). There was no
significant relationship between the percentage of Geobacter and reac-
tor performance.

The organisms found to be present in the reactors can be separated
into three groups: those present only in the acetate fed reactors, those
present only in the wastewater fed reactors, and organisms found in
both (Fig. 4). The putative fermenting and hydrolysing organisms
found only in the wastewater fed reactors form the smallest group.
The putative electrogens, found in both the acetate and wastewater
fed reactors form a larger group, but the largest group by far is the
group of organisms found exclusively in the acetate reactors. Of the
ten most dominant species found in both reactors, all have previously
been observed in MFC reactors [42–44]. Those which dominate within
al and power density (PD) for the different reactor conditions (AS is Arctic soil inoculum,



Fig. 2. Estimates of total diversity for each set of reactor conditions using the Log normal diversity estimate; lines indicate one standard error of the mean.
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the wastewater fed and within the acetate fed reactors only are mostly
Proteobacteria, of the Beta, Gamma and Alpha classes, which are largely
facultative or obligate anaerobes.

3.4. Similarity between replicas

The reactor performance varied considerably between replicate re-
actors, especially in the warm temperature reactors. Despite this, the
Unifrac dissimilaritymatrix (data not shown) showed that theduplicate
reactors fed with acetate were indistinguishable (p = 1) and clustered
based on temperature, with both weighted and unweighted analysis.
The wastewater fed duplicate reactors on the other handwere typically
different, and did not cluster either by temperature or inoculum.

4. Discussion

Realistic temperatures and substrate quality are currently two of the
most important discrepancies between prevailing laboratory research
and plausible pilot scale BES reactors pre-requisite to the application
of BES technologies.

It appears that BESmay be less temperature sensitive than anticipat-
ed. The effects of temperature on COD removal weremodest, and effects
on coulombic efficiency undetectable: only power density dropped ap-
preciably with temperature in this study. Crucially, wastewater fed
Fig. 3.Relative abundance of the eightmost dominant genera found in the reactors (average; n=
used.
reactors were less temperature sensitive than acetate fed reactors.
This is the first controlled demonstration of this phenomenon, which
was previously only hinted at by studies of acetate and wastewater in
isolation.

These findings are potentially significant because the ability to sus-
tain treatment through cold periods is essential if BESs are to be adopted
for wastewater treatment at low temperatures. Moreover this may give
BESs a “comparative advantage” over conventional methanogenic sys-
tems where Q10 values can be as high as 4 [20] compared to 1.2 in
wastewater fed BES. There is no obvious explanation for this difference
in temperature sensitivity. It could reflect differences in the anaerobic
“food chain” in BESs and methanogenic technologies. We know that
growth yields are lower in electrochemical systems than in methano-
genic controls [37]. If some of that missing energy was dissipated as
heat there could a very slight warming of the reactor. As fanciful as
this may sound, self-heating is an established microbial phenomenon
(composting) [45]. A statistically significant 0.9 °C increase in reactor
temperature over the influent water temperature (several degrees
higher than the outside air temperature) was observed at pilot scale
[46].

No special inoculum was required to obtain enhanced performance
at low temperatures. The bacterial species present in the biofilms were
similar regardless of inoculum or temperature. The only benefit of the
arctic soil inoculum was a reduced start up time at low temperatures.
2);where the genus namewas not given by the classification database the family name is



Fig. 4.Venn diagram showing the proportions of species found only in the acetate fed reactors, in the fedwastewater reactors, and of those found in both. The numbers given at the top are
the number of different OTUs found in these groups. The lists show the top 10 most dominant organisms within each group listed at the family and genus level; where this data was
unavailable a higher taxonomic level is given.
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Nothing in our findings would justify the use of an external inoculum to
improve reactor performance. BES reactors acclimated on wastewater
are able to operate at low temperatures with a minor drop in COD re-
moval, and a tolerable drop in power density. A seasonal drop in
power with relatively sustained effluent quality would probably more
acceptable to water utilities for whom the overwhelming priority will
be effluent quality.

The use of acetate conferred a modest advantage on MEC perfor-
mance, the most obvious improvement being the enhanced coulombic
efficiency seen. We speculate that this difference may be more pro-
nounced in a better design of reactor. Curiously, though all reactors re-
ceived the same COD loading, COD removal was actually poorer in the
acetate fed reactors than in the wastewater fed reactors. COD removal
in acetate fed reactors is typically good, though, the explicit comparison
of wastewater and acetate removal in reactors is rare. We are therefore
reduced to speculation that rapid growth of bacteria in the anolyte on
the readily degradable acetate (“acetate weeds”) may have led to the
formation of biomass that was itself difficult to degrade and so subse-
quently contributed to the COD. The exceptionally high diversity in
the biofilm of the anode of the acetate fed reactor compared to waste-
water fed reactors suggests that the microbial ecology of the two reac-
tors were extremely different.

It was expected that reactors fed wastewater would contain groups
of hydrolytic and fermenting bacteria able to digest the longer andmore
complex organic foodmolecules, plus a group of electrogenic organisms
able to perform the final step of electron donation to the anode. It was
also expected that acetate fed cells would contain only this final subset
of bacteria - those able to perform the electrogenic step. This turned out
not to be the case; not only was the diversity in the acetate fed reactors
far higher than in the reactors fed real wastewater, but established elec-
trogenic species such as Shewanellawere present in the wastewater fed
reactors while absent in the acetate fed ones. The microbiology of ace-
tate and wastewater systems appears to be relatively distinct.

The controversy over howdiversity relates to performance in acetate
fed BESs has been documented [29]. Some of the difficulty no doubt
arises because of the difficulty of authoritatively measuring microbial
diversity caused by variations in sample size and sequencing error.
We have sought avoid these pitfalls by the rigorous use of the appropri-
ate protocols. Themethod of Quince et al., 2008 determines the commu-
nity, not the sample diversity and the method of Quince et al., 2009
compensates for homopolymer based sequencing error. Both methods
are well cited and rarely used (though in fairness the second methods
paper was primarily applicable to a particular sequencing platform).

No correlation was observed with either diversity or the dominance
of Geobacter and performance within the acetate fed reactors. However,
within the wastewater fed reactors a significant correlation between
performance and diversity was observed (higher diversity resulting in
improved performance). This would be expected as the wider bacterial
community may be more able to provide an effective food chain to
break down the complex waste. Electrode potentials were not imposed,
but allowed to develop naturally and to be dictated by the environmen-
tal conditions. This is more like the pilot scale reactors we built [46] and
the full scale reactors we envision. Though there may indeed be advan-
tages to controlling the potential at full or pilot scale: it is not clear how
this would be achieved in practice.

In summary: this study rigorously evaluated the effects of tempera-
ture, inoculum, and substrate onMFC reactor performance andbiofilmdi-
versity. It was anticipated that simple relationships would exist, whereby
each factor would affect both performance and diversity, and that acetate
would be a simple model for real wastewater. However, complex and
counterintuitive patterns emerged. Temperature was observed to have
less effect in BES than it does in other anaerobic systems, and particularly
when complex real wastewaters were used. Working reactors with real
wastewaters can be productively operated at low temperatures without
the need for a specialised inoculum. Substrate is observed to have the
most significant effect on both reactor performance and diversity.

These findings are important. Most BES research is still carried out in
warm laboratories using simple substrates. It is tacitly assumed that
these simple and easy to manage systems will be a realistic model for
the real-world applications that we aspire to. However, this study has
shown we need to exercise caution with this approach: an acetate fed
reactor is not necessarily a simple version of a wastewater fed reactor.
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