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Abstract 9 

Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types 10 

of waste including urine and wastewater. However, the fate of pathogens in an MFC-based 11 

system remains unknown, and in this study we investigated the effect of introducing the 12 

enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The 13 

MFCs continuously fed with urine showed high disinfecting potential. As part of two 14 

independent trials, during which the bioluminescent S. enteritidis strain was introduced into 15 

the MFC cascade, the number of viable counts and the level of bioluminescence were 16 

reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy 17 

observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 18 

1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results 19 

indicated that the bactericidal properties of a well performing anode were dependent on 20 

power performance and the oxidation-reduction potential recorded for the MFCs. This is the 21 

first time that the fate of pathogenic bacteria has been investigated in continuously operating 22 

MFC systems. 23 
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Introduction 26 

A Microbial Fuel Cell (MFC) is a bioelectrochemical reactor in which organic compounds in 27 

the feedstock are oxidised in the anodic chamber to produce carbon dioxide, protons and 28 

electrons (in the form of NADH/NADPH) within the microbial cells. Feedstock fuel 29 

(utilisable substrate) can include a wide range of compounds, from acetate and other low 30 

molecular weight monomers, including sugars right up to particulate macromolecules and 31 

complex real world mixtures such as sludge and urine, under anaerobic conditions in the 32 

anode chamber. Utilisation of complex macromolecules which could be present in urine 33 

(Brooks and Keevil, 1997) implies the abundance of hydrolytic activity around and within the 34 

anodic biofilm. Electrons derived from the NADH redox reactions within the cell are 35 

transported to the anodic electrode (via direct conductance or via chemical redox mediators) 36 

and then travel through the external circuit to the cathode within the cathodic chamber, while 37 

protons generated from the biofilm on the anode pass through a membrane, which separates 38 

both chambers (Bennetto et al., 1983). The use of this technology has attracted increasing 39 

interest in recent years, and several scaled-up applications have been successfully 40 

demonstrated, for treating waste products (as microbial electrolysis cells or MEC) (Cusick et 41 

al., 2011; Heidrich et al., 2014) as well as for cleaning waste and producing electricity (as 42 

true Microbial Fuel Cells) (Ieropoulos et al., 2015). The cost-effectiveness of the MFC 43 

technology (Behera et al., 2010; Pasternak et al., 2016a) has also been demonstrated.  44 

Although the MFC technology has seen significant scientific development over the last 45 

three decades, implementing this technology in real-world applications requires extensive 46 

studies on health and sanitation hazards. These concerns have rarely been addressed. 47 

An important part of the health risk assessment for wastewater treatment technologies 48 

consists of determining the fate of enteric pathogens in-situ and ex-situ of a treatment 49 

process. Insufficient sanitation, together with unavailability of improved water systems, leads 50 



3 

 

to hundreds of thousands of deaths each year, particularly in Sub-Saharan Africa 51 

(Montgomery and Elimelech, 2007). Therefore, the MFC technology, which could be used in 52 

remote, off-grid areas of Developing World countries, to treat wastewater and generate 53 

electricity (Castro et al., 2014; Yazdi et al., 2015; Hsu et al., 2017), offers great promise. 54 

Although pathogens are likely to be more commonplace in fecal sludge it is common practice 55 

to separate the solid fraction from the top liquid fractions in sludge, and the liquid fraction is 56 

usually dominated by urine. Moreover, the liquid fraction can spread pathogens greater 57 

distances from the source of contamination.  58 

There have been some reports already published regarding the disinfection potential of 59 

MFC-driven processes. Nevertheless, these studies were focusing on the disinfecting 60 

properties of the synthesised catholyte, which could be a result of oxygen reduction to H2O2 61 

(Fu et al., 2010) or electro-osmotic drag occurring in the MFCs. The H2O2 synthesis occurs 62 

spontaneously at the cathode and was successfully employed to disinfect the effluent of a 63 

wetland system. Treating the effluents with H2O2 solution resulted in a significant decrease of 64 

total coliforms (Arends et al., 2014). Another approach for disinfection with the use of 65 

catholyte was described by Jadhav et al (Jadhav et al., 2014). The authors supplied the 66 

cathodic chamber with sodium hypochlorite for the simultaneous improvement of power 67 

output and disinfection, which was performed by recirculating the anolyte through the 68 

cathodic chamber. A more recent study showed that highly alkaline catholyte produced in 69 

ceramic MFCs, also possesses strong disinfecting properties; its application resulted in 70 

significant decrease of metabolic activity of Escherichia coli (Gajda et al., 2016) chosen as a 71 

representative enteric pathogen . The production rate and properties of the catholyte are 72 

dependent on the properties of the ceramic separator, as well as the power output. It has been 73 

reported that the pH of the catholyte and its disinfection strength is positively correlated with 74 

the ceramic membrane thickness (Merino Jimenez et al., 2016). Moreover, pH alone can be 75 
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favourable to growth, when at or close to neutral (pH 6.0- 7.5) whilst much higher (>pH 8.0) 76 

or much lower levels (<pH 5.5) may contribute strongly to bacterial survival or killing. 77 

The catholyte is one example of the numerous applications that makes MFCs a platform 78 

technology, and one that offers great promise for further investigation. However, the 79 

exposure of MFC anodes - or any bioelectrochemical system - to pathogenic organisms in a 80 

real environment, is a parameter that has not been assessed before, and the hypothesis is that 81 

exogenous microorganisms entering an anodic MFC chamber, will be out-competed by the 82 

established electroactive community, if the latter is thriving under, or close to maximum 83 

power transfer conditions.  84 

The aim of this study was to investigate the fate of one of the most important members of 85 

the Enterobacteriaceae family, namely Salmonella enterica serotype enteritidis. This rod-86 

shaped gram-negative species, which may originate from sewage contamination (Guard-87 

petter and Guard‐ Petter, 2001), may cause food-borne diseases.,. This species was 88 

introduced into an MFC cascade system treating human urine, to determine the anodic killing 89 

efficacy when operating in continuous flow conditions. This study used bioluminescent 90 

reporter strains to measure the rate of killing in situ and used viable counts on selective 91 

recovery media to demonstrate that urine can be efficiently disinfected by the MFC cascade 92 

system.  93 

Materials and methods 94 

MFC construction and operation 95 

Ceramic earthenware cylinders were used to build open to air cathode, small scale MFCs. 96 

The ceramic (Scientific & Chemical Supplies Ltd, UK) material was used both as the proton 97 

exchange membrane and body of the MFC. Each ceramic cylinder was cut to maintain the 98 

internal volume of empty MFCs equal to 11.4 mL. Carbon fiber veil with a carbon loading of 99 
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20 g/m2 was used as the anode (PRF Composite Materials, Dorset, UK). Anodes were cut 100 

into rectangles of dimensions 9×28 cm and folded to obtain a total surface area of 252 cm2 101 

and threaded with a plain Ni-Cr wire (Ø0.45 mm, Scientific Wire Company, UK), which was 102 

used for connection. The cathodes were made of conductive graphite paint as described by 103 

Winfield et al. (Winfield et al., 2014). In brief, petroleum spirit was used to dissolve the 104 

polyurethane rubber coating (PlastiDip, Petersfield, UK) and mixed with graphite (Fisher 105 

Chemicals, UK) in a 1:3 (plastidip:graphite) ratio. Two layers of conductive paint (carbon 106 

loading of 35.02 mgC/cm2) were applied on the surface of the ceramics and supplied with a 107 

nickel-chromium mesh used as a current collector (20x20, 0.18 mm). The total carbon 108 

loading for the cathode was 0.851 gC, and the projected surface area was 24.18 cm2. 109 

The 3D printed Nanocure® RCP30-resin lid designed with inlet and outlet tubes was used 110 

as the front of the MFC, whilst a transparent acrylic lid (3 mm thick) was used to cover the 111 

other side of the chamber. The RCP30-resin lids were designed using SolidWorks 2013 112 

software and printed with Perfactory 4 3D printer (Envisiontec, Germany). Both lids were 113 

assembled with the MFC by a plain nylon screw (Ø3 mm, RS, UK). The detailed schematic 114 

representation of individual MFCs has been described previously (Pasternak et al., 2016b). 115 

During the first trial, additional 2 cm2 of carbon veil wrapped around Ni-Cr wire were 116 

introduced through the channel in the lid to the anolyte chamber. These removable additional 117 

‘anodes’ had a direct physical and electrical contact with the main anode in the MFCs and 118 

allowed the formation of the anodic biofilm. These removable anodes allowed aseptic 119 

sampling of biofilms (by in situ detachment) to monitor the incorporation and survival of S. 120 

enteritidis cells in the anodic biofilm. 121 

Experimental setup 122 

Two individual trials were run over the experimental period. The first trial consisted of a 123 

cascade of 9 MFCs operating in closed circuit (CC) conditions and a separate cascade of 3 124 
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MFCs operating in open circuit (OC) conditions. Both the CC and OC MFCs were inoculated 125 

with the mixed bacterial community derived from anaerobic activated sludge (Saltford 126 

Scientific Laboratory, Wessex Water, Bristol UK).  127 

The second trial consisted of the same two cascades as trial 1, with an additional control 128 

with 3 OC/abiotic control MFCs. This additional control cascade was setup such that its 129 

liquid output was flowing into the input of the OC/biotic control cascade. The abiotic control 130 

MFCs were disinfected prior to the experiment by using 70% ethanol solution, followed by 131 

washing with sterile water and drying at 60ºC for 1 hour. All of the MFCs were separated by 132 

physical air gap between the cells to avoid any conductive bridging between the anodes. 133 

To estimate the killing potential against S. enteritidis and monitor its metabolic activity in 134 

real time, a flow cell supplied with H10720 photosensor module (Hamamatsu Photonics 135 

K.K., Japan) was used. The sensor was introduced after the 9th MFC in CC cascade (trial 1) 136 

and after the 3rd MFC in the OC abiotic cascade (trial 2). 137 

Fresh neat human urine (collected not later than 24 hours before the trial and stored at 4ºC) 138 

was used as a fuel and supplied to the cascades by using a multichannel peristaltic pump 139 

(Watson Marlow, USA) at a constant flow rate of 0.90 L/d. 140 

The external load connected to each MFC, was 1000 Ω for the initial 11 days of operation 141 

and 250 Ω afterwards for the rest of the experiment. The cascade was fed with fresh human 142 

urine as the fuel. Before the trials, the CC and OC MFCs were operated for 167 days in order 143 

to fully allow the maturing of the anodic biofilm and to demonstrate the feasibility of 144 

disinfection in a well-established MFC system. 145 

Introduction of Salmonella enteritidis strain 146 

The S. enteritidis strain was obtained from the collection of the University of the West of 147 

England, the serotype designation was validated by serotyping (Turner, 2013). The strain was 148 

carrying the pBBR1MCS-2 plasmid derivative containing the luxCDABE operon of 149 
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Photorhabdus luminescens. Prior to the experiment, the strain was subcultured in LB media 150 

containing kanamycin (10 μg ml-1) as the selective agent and incubated overnight in 37°C. 151 

Subsequently, when the optical density at a wavelength of 600nm (OD600) reached 1.0, 15 152 

mL of the culture was centrifuged, washed twice with a 0.9% NaCl solution, re-suspended in 153 

50% glycerol solution, and stored in -20°C until the start of the experiment. To inoculate 154 

urine with S. enteritidis, cryopreserved bacterial cultures were centrifuged and re-suspended 155 

in 1 L of neat urine. 156 

Monitoring the disinfection of urine 157 

To estimate the killing potential of the MFCs in real time, the signal obtained from the 158 

photosensor was calibrated with the corresponding signal from the tube luminometer 159 

GLOMAX, 20/20 (Promega, USA). The signal was therefore given in Relative Luminescence 160 

Units (RLU). Moreover, at the end of experiment, the samples were collected from all of the 161 

sampling points and their luminescence was assessed using a standard benchtop luminometer. 162 

In addition, at the end of trial 1, small (2 cm2) anode pieces were removed from the anolyte 163 

chambers and analysed in the same manner after resuspending the biofilm by sterile rod and 164 

vortexing (3 min). The quantity of Colony Forming Units (CFU) was assessed using XLD 165 

agar (Oxoid, UK). The pH and ORP were measured with Orion Dual Star pH meter (Thermo 166 

Fisher Scientific, USA). 167 

The log reduction (LR) of colony forming units, as well as log reduction of 168 

bioluminescence intensity was calculated using the following formula: 169 

𝐿𝑅 = log (
𝐴

𝐵
) 170 

Where:  171 

A – number of viable microorganisms or bioluminescence intensity before treatment, 172 

B – number of viable microorganisms or bioluminescence intensity after treatment. 173 
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The standard deviation was calculated as described by Zelver et al. (Zelver et al., 2001): 174 

𝑆𝐷𝐿𝑅 = [(𝑆𝐴
2/𝑛𝐴) + (𝑆𝐵

2/𝑛𝐵)] 175 

Where: 176 

SA and SB - the sample standard deviations of the log reduction values for samples before 177 

and after treatment, respectively; 178 

nA and nB – number of replicates in population before and after treatment, respectively. 179 

Data logging and processing 180 

MFC performances, as well as the signal from the photosensor were recorded using a 181 

Picolog ADC-24 Data Logger (Pico Technologies, UK), with the data logging sample rate set 182 

to 3 minutes. The current was calculated according to Ohm’s law: I = V/R, where V is the 183 

measured voltage in Volts (V) and R is the value of the external resistance. The power output 184 

P in Watts (W) was calculated using equation: P = I x V. Experimental data were processed 185 

using Microsoft Excel 2010 and plotted by GraphPad Prism 5.0 software. 186 

 187 

Fig 1. Schematic representation of the experimental setup. 188 

Statistical analysis 189 

The LR data was analysed using Shapiro-Wilk normality test and t-student test (α=0.05) to 190 

determine the significance of difference between the means. All statistical analysis was 191 

performed using R statistical environment. 192 

Ethics statement 193 

This research involved the use of human urine. The appropriate written consent was given by 194 

all individuals participating in the study. This research was approved by NHS (12/YH/0493) 195 

and University of the West of England Research Ethics Committee (112207). 196 

Results and discussion 197 
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From previous work, it was established that this type of MFCs could reach power output levels 198 

of the order of 105.5±32.2 µW (Pasternak et al., 2016b). However, during long-term operation, 199 

undesirable cathodic biofilm formation caused deterioration of performance. Therefore, the 200 

first trial described in the current study, was performed when MFCs produced only 31.2±9.2 201 

µW (Fig 2), which corresponds to 29.5 % of the best performance. During the second trial, the 202 

biofilm formed at the cathodes was removed, thus the power recorded over the experimental 203 

period increased to 65.3±9.3 µW. In both trials, the power performance recorded for individual 204 

MFCs was stable and indicated that the fuel supplied to the MFCs, at constant flow rate and in 205 

controlled temperature conditions, was utilised at constant reaction rates. The stable power 206 

output was the result of the stable metabolic rate and cell population number (Ledezma et al., 207 

2012) giving constant electrochemical conditions, which in turn helped to stabilise the whole 208 

system, rendering it reliable for investigating the disinfection efficacy of the target reporter 209 

species. 210 

 211 

Fig 2. Temporal power performance of the individual MFCs in the cascade system 212 

observed during the first (a) and the second (b) trial. 213 

 214 

The luminescence observed for the whole experimental period did not exceed 3.93×103 215 

RLU. In contrast, a strong signal reaching 1.73×106 RLU was recorded when the photosensor 216 

was introduced to the abiotic control (Fig 3). The immediate response of the sensor was 217 

observed after the second hour of the experiment, when all of the MFCs in the triplet were 218 

fully filled with urine, allowing the treated urine to pass through the sensor chamber. 219 

Therefore, the real-time monitoring of bioluminescence intensity with the photosensor 220 

introduced in two different sampling points, revealed that the environment within the closed 221 

circuit MFCs, was indeed hostile to the pathogens, suppressing microbial activity of 222 
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exogenous bacteria. The bioluminescence reaching up to 1.73×106 RLU in the case of the 223 

abiotic control, indicated that none of the materials used to construct the MFCs, nor the 224 

conditions occurring in abiotic OC MFCs were toxic against the S. enteritidis strain. 225 

Although the data from the photosensor were generated from two cascades with a different 226 

number of units, the luminescence results were confirmed by analyzing the samples collected 227 

from both cascades (3rd unit in each cascade), using the benchtop luminometer (Fig 4).  228 

 229 

Fig 3. Real-time bioluminescence recorded for the closed-circuit MFCs (after 9th MFC 230 

in the cascade) and abiotic open circuit control MFCs (after 3rd MFC in the cascade). 231 

Monitoring the microbial activity and viability in all of the sampling points, as well as 232 

during the inoculation of the MFCs with S. enteritidis allowed the determination of the log-233 

reduction (LR) values for the above-mentioned parameters. In both trials, a positive effect 234 

(negative LR values) on microbial viability (CFU) and metabolic activity (reflected by RLU 235 

– bioluminescence being dependent on metabolic rate) was observed as a result of 18 hours 236 

of incubation in batch culture (bottle tx). Moreover, only negligible difference was observed 237 

when comparing RLU LR values of batch culture (bottle tx) and the inlet to the cascade (inlet 238 

tx). The differences recorded in the CFU LR values were probably the result of experimental 239 

variance in sampling bacterial cells undergoing sedimentation in batch culture. This 240 

demonstrated that there was no disinfection effect prior to entering the cascade system, that 241 

might have been caused by mechanical pressure derived from peristaltic pump or redox 242 

reactions occurring during the residence within the silicon tubing. Similarly, only negligible 243 

negative effects (positive LR values) were observed, when the pathogenic cells were 244 

processed through the abiotic OC cascade (ac3). The retention of pathogenic cells in abiotic 245 

MFCs may have initiated the adsorption, sedimentation and biofilm formation mechanisms.  246 
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It is known, that Salmonella species are able to form a biofilm structure on various types of 247 

substrata (Jones and Bradshaw, 1996; Giaouris and Nychas, 2006), thus some positive effect 248 

(decrease of viability) may have been caused by the accumulation of its metabolic by-249 

products, or simply by attachment of the dead or dying bacterial cells to the biofilm. On the 250 

other hand, when the biofilm was removed from the 2cm2 of anode at the end of trial 1, none 251 

of the viable Salmonella sp. cells were detected neither in open circuit nor closed circuit 252 

MFCs (Table 1). Similarly, the observed LR values for luminescence were indicating that 253 

none of the Salmonella enteritidis cells were incorporated to the matured biofilm.  254 

Table 1. Monitoring of viability and luminescence of S. enteritidis on the biofilm surface. 255 

*the LR result is shown based on the calculation that 1 CFU would give 7.09 LR. The LR 256 

values cannot be calculated when the CFU=0, na – not applicable. 257 

RLU CFU 

Average SD Average SD Average SD Average SD 

179.3 10.5 5.03 0.02 0 0 >7* na 

228.7 42.6 4.93 0.06 0 0 >7* na 

323.0 58.8 4.78 0.05 0 0 >7* na 

336.7 61.8 4.76 0.06 0 0 >7* na 

 258 

Fig 4. Changes in bioluminescence intensity, bacterial viability and physical-chemical 259 

parameters of anolyte. Log reduction (LR) was calculated using Inlet t0 as the reference 260 

point. LR datasets are represented by an average of 3 replicates ±SD. Closed circuit MFCs 261 

were marked by gray circles. The star * symbol indicates the first trial, while labels without 262 

symbol indicate the second trial. The data between oc3 and k3 are shown disconnected, since 263 

the two cascades were independent (see Fig.1), i.e. the effluent from oc3 did not flow into k3. 264 
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ORP data are shown for Trial 2 only, due to technical problems of measurement during Trial 265 

1. 266 

 267 

The log-reduction of RLU value calculated for the abiotic OC cascade (ac3) was 3 orders 268 

of magnitude lower than that from the closed circuit MFCs, which is also consistent with the 269 

results obtained from the real time luminescence monitoring. Nevertheless, a significant 270 

(p<0.05) disinfecting effect was observed for the biotic OC control (oc3). The RLU LR 271 

values reached 3.13±0.02 LR and 3.64±0.04 LR in two individual trials, while the CFU LR 272 

observed for Trial 2 was equal to 2.71±0.05 LR and 0.16±0.15 LR for Trial 1. In all cases, the 273 

LR values were still lower when compared to those observed from the closed circuit MFCs, 274 

showing that the killing potential of OC MFCs was much lower than that of the CC MFCs. 275 

The difference in CFU LR values when comparing both trials indicates that perhaps the weak 276 

disinfecting properties observed from the biotic OC control, could have been the result of 277 

lytic or hydrolytic biochemical reactions, which were dependent on the length of time that 278 

individual MFCs were running for. Trials 1 and 2 were performed in two different periods of 279 

time, resulting in two different power performance levels (as shown on Fig 2). The cathode 280 

regeneration procedure (Pasternak et al., 2016b), was not carried out for the OC MFCs, thus a 281 

significant deterioration of the electrodes could have affected the overall OC MFC 282 

environment and biofilm metabolism. The ORP values, reaching -490.7 mV (vs SHE), which 283 

is the highest negative ORP observed in this study, indicated good dynamic/electrochemical 284 

conditions within the OC MFCs (Fig 4). The sub-optimum power output conditions occurring 285 

in the CC MFCs (31μW Trial 1 & 65μW Trial 2 vs 105μW max recorded [15]) may have 286 

allowed antagonistic (to electron transfer) fermentation processes. Such conditions could 287 

have a negative effect on the killing efficacy, suppressing the overall capabilities of the 288 

MFCs. 289 
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Although the killing effect on S. enteritidis was observed for the biotic OC control, the 290 

CFU LR values observed for the corresponding closed circuit MFCs were significantly higher 291 

(p<0.05). Moreover (with one exception), the LR values were increasing after the treatment 292 

in each triplet of CC MFCs, reaching up to 4.43±0.04 LR at the end of the cascade. The pH 293 

of urine increased from pH 6.8 (when fresh) to as high as pH 8.94-9.59 thus helping to 294 

antagonize the growth of Salmonella in all of the inoculated, biotic MFCs, while the ORP, 295 

monitored for Trial 2 indicated a highly reducing environment. Moreover, a linear decrease 296 

of ORP was noticed along the CC cascade. These values of CFU LR are in agreement with 297 

those observed when the hydrogen peroxide derived from cathodic reactions was used against 298 

coliforms (Arends et al., 2014).  299 

It is therefore hypothesised that the cascade effect was creating favourable conditions for 300 

the removal of pathogenic species from urine by the sequential increase of the reducing force, 301 

along with the increase of the pH. The good decrease of the ORP force and increase of the 302 

pH, together with the lower LR observed for the OC biotic control (oc3) suggest that ORP 303 

and pH were two important factors influencing the killing potential of MFCs. However, 304 

although direct effect of ORP and pH on pathogen inactivation was observed, the LR values 305 

achieved for closed circuit MFCs were higher than the open circuit controls in all trials. The 306 

closed circuit MFCs reached higher LR values in comparison to OC MFCs for which the 307 

recorded pH was comparable or even higher (Trial 1 – Figure 4) than for the closed circuit 308 

MFCs. Therefore, the results suggest that the increase of pH, caused by the urea hydrolysis 309 

was not the only factor contributing to the inactivation of the pathogens.  It is assumed that 310 

the bioelectrochemical reactions generating electric current were introducing additional stress 311 

mechanisms against the pathogenic cells, thus increasing the disinfection effect during the 312 

treatment of human waste in MFCs.  313 

 314 
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Fig 5. Relationship between power and oxidation-reduction potential with killing 315 

efficacy. 316 

 317 

To further investigate this hypothesis, linear regression models were tested for ORP, power 318 

and LR variables (Fig 5). The highest correlation coefficients were calculated when the effect 319 

of power generated by the MFCs on CFU:LR and ORP on RLU:LR were investigated, 320 

respectively. These results indicate that although both factors were well describing the LR 321 

variables, the change in ORP had a more marked effect on the metabolic activity of the 322 

pathogens, whilst power output had higher impact on the viability of pathogenic bacteria. It is 323 

therefore concluded that both of these factors played a role in creating a hostile environment 324 

for the pathogenic bacteria. The results also indicate that oxidising the urine constituents in 325 

current-generating pathways have induced a killing effect when compared to the non-current 326 

generating pathways occurring in both types of OC controls. 327 

The negative ORP was driven by the current-producing reactions. The decrease of 328 

metabolic activity observed by the decrease of the bioluminescence was followed by a 329 

decrease of viability. Such a decrease in viable counts of E. coli was also observed, when the 330 

negative potential was artificially supplied to the carbon fiber electrode, resulting in over 3 331 

log-fold reduction (Matsunaga et al., 1994). It is therefore assumed, that the negative anodic 332 

potential created in MFCs treating urine may lead to the inhibition of the respiratory chains of 333 

bacteria and consequently, death of the cells. 334 

The decrease of the viability of the representative serovar of Salmonellae observed in this 335 

study was of a higher magnitude, when compared to conventional wastewater treatment 336 

plants. In a comprehensive study reported by Koivunen et al. the authors have identified 32 337 

different Salmonella serovars and recorded removal efficiency of 2 and 3 log units during 338 

treatment in biological-chemical reactors and tertiary filtration units (Koivunen et al., 2003). 339 
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Increased killing efficiency was observed when UV or ozone were used to treat wastewater 340 

(Gehr et al., 2003). The disinfection efficiency observed in this study is similar to the more 341 

recently described method of electroporation using a conductive nanosponge (Boehm and 342 

Cui, 2013). These authors recorded a disinfection efficiency reaching up to 6 log-fold 343 

reduction of enteric bacteria (including Salmonella enterica serovar typhimurium). 344 

Nevertheless, the voltage externally applied to the anode was 2 orders of magnitude higher 345 

than that produced by the MFCs used in this study and an additional disinfectant was used to 346 

induce the killing process. It is possible that the power production in MFCs may have a 347 

similar effect on pathogenic bacteria. The electrochemical process described herewith, may 348 

lead to the increased uptake of ionic species to the interior of bacterial cells. 349 

It is also assumed that the kill rates observed in this study may have also resulted from the 350 

formation of ionic-redox chemical species that led to negative ORP. In addition, the role and 351 

contribution of other potential bacteriocidal mechanisms (e.g. lytic enzymes, antibiotics, 352 

bacteriocins or other toxic molecules) has not been investigated in the present study. 353 

Considering that closed circuit MFCs have shown significantly higher killing efficiency, it is 354 

concluded that the production of electric power resulted in changing both the physico-355 

chemical parameters of urine and influenced the integrity of the bacterial cells, leading to a 356 

high killing efficacy in a continuously operating MFC system. 357 
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