215 research outputs found

    Body composition, dietary intake, and iron status of female collegiate swimmers

    Get PDF
    The purpose of this study was to determine the effect of training on body composition, dietary intake, and iron status of female collegiate swimmers and whether nutrition attitudes are correlated to dietary choices. Measurements were obtained on 24 eumenorrheic Iowa State University female collegiate swimmers (swimmers, n=18; divers, n=6) at preseason, before competition, and after 16-weeks of training. Training consisted of 3 days/week on dry land (resistance, strength, flexibility; 1.5 hours/day) and 6 days/week in-water (7,000-11,000 yards/day; nine, 2 hour sessions/week). Body composition was assessed using dual-energy x-ray absorptiometry (DXA). Changes were documented in body composition, regional fat and lean tissue distribution, dietary intake, and iron status using paired t-tests. We also examined the relationship between dietary changes and nutrition attitudes using correlation analyses. There were decreases in BMI (P=0.05), waist circumference (P[Less than or equal to symbol]0.0001), hip circumference (P[Less than or equal to symbol]0.0001), whole body fat weight (P=0.0002), and percentage body fat (P[Less than or equal to symbol]0.0001); lean weight (P=0.028) increased. We found no significant change in regional lean distribution, but documented a decrease in fat at the waist (P=0.0002), hip (P=0.0002), and thigh (P=0.002). Energy intake at preseason averaged 2403±864 kcal-day−1 with macronutrient composition of 62% carbohydrate, 13% protein, and 24% fat; no changes were noted from preseason to late season. Dietary fiber (P=0.036), iron (P=0.015), vitamin C (P=0.029), vitamin B6 (P=0.032), and fruit exchanges (P=0.003) increased. A higher nutrition attitude score was correlated with a higher intake of calcium (P=0.02), milk exchanges (P=0.04), and fruit exchanges (P=0.019). We documented an increase in hemoglobin (Hb) (P=0.046) and hematocrit (Hct) (P=0.014) and a decrease in serum transferrin receptor (P[Less than or equal to symbol]0.0001). In summary, after 16-weeks of training, female collegiate swimmers decreased overall body fat and increased lean weight. Dietary quality improved with an increase in dietary fiber, iron, vitamin C, vitamin B6, and fruit exchanges, as well as a decrease in fat exchanges. A more positive nutrition attitude score was correlated with higher intakes of calcium, milk, and fruit. Iron status improved with an increase in Hb, Hct, and a decrease in serum TfR. Additional studies to evaluate body composition and iron status in relation to dietary intake in female collegiate swimmers are warranted

    Apes communicate about absent and displaced objects: methodology matters

    Get PDF
    Displaced reference is the ability to refer to an item that has been moved (displaced) in space and/or time, and has been called one of the true hallmarks of referential communication. Several studies suggest that nonhuman primates have this capability, but a recent experiment concluded that in a specific situation (absent entities) human infants display displaced reference but chimpanzees do not. Here we show that chimpanzees and bonobos of diverse rearing histories are capable of displaced reference to absent and displaced objects. It is likely that some of the conflicting findings from animal cognition studies are due to relatively minor methodological differences, but are compounded by interpretation errors. Comparative studies are of great importance in elucidating the evolution of human cognition, however, greater care must be taken with methodology and interpretation for these studies to accurately reflect species differences

    Can genetic markers predict the sporadic form of Alzheimer’s disease? An updated review on genetic peripheral markers

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools

    Joyful by nature : approaches to investigate the evolution and function of joy in non-human animals

    Get PDF
    This work was supported by Grant #0333 from the Templeton World Charity Foundation (TWCF) and a Brian Mason Technical Trust Fund grant to X. J. N. and A. H. T.The nature and evolution of positive emotion is a major question remaining unanswered in science and philosophy. The study of feelings and emotions in humans and animals is dominated by discussion of affective states that have negative valence. Given the clinical and social significance of negative affect, such as depression, it is unsurprising that these emotions have received more attention from scientists. Compared to negative emotions, such as fear that leads to fleeing or avoidance, positive emotions are less likely to result in specific, identifiable, behaviours being expressed by an animal. This makes it particularly challenging to quantify and study positive affect. However, bursts of intense positive emotion (joy) are more likely to be accompanied by externally visible markers, like vocalisations or movement patterns, which make it more amenable to scientific study and more resilient to concerns about anthropomorphism. We define joy as intense, brief, and event-driven (i.e. a response to something), which permits investigation into how animals react to a variety of situations that would provoke joy in humans. This means that behavioural correlates of joy are measurable, either through newly discovered 'laughter' vocalisations, increases in play behaviour, or reactions to cognitive bias tests that can be used across species. There are a range of potential situations that cause joy in humans that have not been studied in other animals, such as whether animals feel joy on sunny days, when they accomplish a difficult feat, or when they are reunited with a familiar companion after a prolonged absence. Observations of species-specific calls and play behaviour can be combined with biometric markers and reactions to ambiguous stimuli in order to enable comparisons of affect between phylogenetically distant taxonomic groups. Identifying positive affect is also important for animal welfare because knowledge of positive emotional states would allow us to monitor animal well-being better. Additionally, measuring if phylogenetically and ecologically distant animals play more, laugh more, or act more optimistically after certain kinds of experiences will also provide insight into the mechanisms underlying the evolution of joy and other positive emotions, and potentially even into the evolution of consciousness.Publisher PDFPeer reviewe

    Investigating a genetic link between Alzheimer’s Disease and CADASIL related Cerebral Small Vessel Disease

    Get PDF
    Monogenic forms of Alzheimer’s disease (AD) have been identified through mutations in genes such as APP, PSEN1, and PSEN2, whilst other genetic markers such as the APOE ε carrier allele status have been shown to increase the likelihood of having the disease. Mutations in these genes are not limited to AD, as APP mutations can also cause an amyloid form of cerebral small vessel disease (CSVD) known as cerebral amyloid angiopathy, whilst PSEN1 and PSEN2 are involved in NOTCH3 signalling, a process known to be dysregulated in the monogenic CSVD, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The overlap between AD genes and causes of CSVD led to the hypothesis that mutations in other genes within the PANTHER AD–presenilin pathway may be novel causes of CSVD in a cohort of clinically suspicious CADASIL patients without a pathogenic NOTCH3 mutation. To investigate this, whole exome sequencing was performed on 50 suspected CADASIL patients with no NOTCH3 mutations, and a targeted gene analysis was completed on the PANTHER. ERN1 was identified as a novel candidate CSVD gene following predicted pathogenic gene mutation analysis. Rare variant burden testing failed to identify an association with any gene; however, it did show a nominally significant link with ERN1 and TRPC3. This study provides evidence to support a genetic overlap between CSVD and Alzheimer’s disease.</p

    Exonic mutations in cell–cell adhesion may contribute to CADASIL-related CSVD pathology

    Get PDF
    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a condition caused by mutations in NOTCH3 and results in a phenotype characterised by recurrent strokes, vascular dementia and migraines. Whilst a genetic basis for the disease is known, the molecular mechanisms underpinning the pathology of CADASIL are still yet to be determined. Studies conducted at the Genomics Research Centre (GRC) have also identified that only 15–23% of individuals clinically suspected of CADASIL have mutations in NOTCH3. Based on this, whole exome sequencing was used to identify novel genetic variants for CADASIL-like cerebral small-vessel disease (CSVD). Analysis of functionally important variants in 50 individuals was investigated using overrepresentation tests in Gene ontology software to identify biological processes that are potentially affected in this group of patients. Further investigation of the genes in these processes was completed using the TRAPD software to identify if there is an increased number (burden) of mutations that are associated with CADASIL-like pathology. Results from this study identified that cell–cell adhesion genes were positively overrepresented in the PANTHER GO-slim database. TRAPD burden testing identified n = 15 genes that had a higher number of rare (MAF 0.8) mutations compared to the gnomAD v2.1.1 exome control dataset. Furthermore, these results identified ARVCF, GPR17, PTPRS, and CELSR1 as novel candidate genes in CADASIL-related pathology. This study identified a novel process that may be playing a role in the vascular damage related to CADASIL-related CSVD and implicated n = 15 genes in playing a role in the disease.</p

    Is Enrichment Always Enriching and How Would You Know? Unintended Consequences and the Importance of Formal Assessment of Enrichment Programs in Bottlenose Dolphins (Tursiops truncatus)

    Get PDF
    Bottlenose dolphins (Tursiops truncatus) are viewed as a highly intelligent species capable of complex behaviors. This requires marine parks to maintain dynamic environmental enrichment programs in order to ensure dolphins’ optimal psychological and physiological well-being while in human care. In this study, two experiments were conducted to determine the effects of different forms of enrichment on the behavior of four bottlenose dolphins. In Experiment 1, multiple forms of novel enrichment resulted in a shift away from individual swim patterns – a change that is associated with increased behavioral diversity and so often considered an improvement in animal welfare – but also resulted in avoidance behavior and initially resulted in a decrease in affiliative behavior. In Experiment 2, introducing choice of enrichments resulted in unintended social consequences, such as agonistic behaviors. These two experiments together demonstrated that interpreting the results of enrichment programs may not be as straightforward as often presumed. The results suggest that unique forms of enrichment and variable schedules might be particularly effective but also that consistent evaluation continues to be necessary to minimize unintended behavioral consequences

    Variation H452Y in HTR2A gene affects immediate visual memory

    Get PDF
    Serotonin and its receptors, including the 5-Hydroxytryptamine Receptor 2A encoded by the HTR2A gene, are important for learning and memory in animals and humans. Polymorphic variation in the HTR2A gene, which encodes the 5-HT2Aserotonin receptor, has previously been shown to associate with some memory traits, in particular effecting delayed verbal memory. In the current study we have examined the HTR2A His452Tyr (H452Y) substitution for association in a cohort of healthy individuals whose memory traits were assessed using a comprehensive battery of memory tests including, but not limited to, measures of prospective and retrospective memory. Although we failed to replicate previous findings of an effect of the polymorphism on delayed verbal memory, we found a significant association between the HTR2A H452Y polymorphism and immediate visual memory, showing that the heterozygous genotype is associated with poorer immediate visual memory, with delayed visual memory unaffected, although, with correction for multiple testing, this no longer passed significance thresholds. No HTR2A Tyr/Tyr individuals were detected in this cohort due to the low minor allele frequency

    Multi-phenotype genome-wide association studies of the Norfolk Island isolate implicate pleiotropic loci involved in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a persistent impairment of kidney function. Genome-wide association studies (GWAS) have revealed multiple genetic loci associated with CKD susceptibility but the complete genetic basis is not yet clear. Since CKD shares risk factors with cardiovascular diseases and diabetes, there may be pleiotropic loci at play but may go undetected when using single phenotype GWAS. Here, we used multi-phenotype GWAS in the Norfolk Island isolate (n = 380) to identify new loci associated with CKD. We performed a principal components analysis on different combinations of 29 quantitative traits to extract principal components (PCs) representative of multiple correlated phenotypes. GWAS of a PC derived from glomerular filtration rate, serum creatinine, and serum urea identified a suggestive peak (pmin = 1.67 × 10-7) that mapped to KCNIP4. Inclusion of other secondary CKD measurements with these three kidney function traits identified the KCNIP4 locus with GWAS significance (pmin = 1.59 × 10-9). Finally, we identified a group of two SNPs with increased minor allele frequencies as potential functional variants. With the use of genetic isolate and the PCA-based multi-phenotype GWAS approach, we have revealed a potential pleotropic effect locus for CKD. Further studies are required to assess functional relevance of this locus
    • …
    corecore