7 research outputs found

    Parodontiitin ja peri-implantiitin biomarkkerit suun nesteissä ja parodontiitin poistogeenisessä hiirimallissa

    Get PDF
    Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.Parodontiitti ja peri-implantiitti ovat kroonisia tulehdussairauksia hampaita ja keinojuuria eli implantteja ympäröivissä kiinnityskudoksissa. Bakteerien aineenvaihduntatuotteet, entsyymit ja toksiinit, sekä isännän oma puolustusvaste vieraille antigeeneille johtavat parodontiitin ja peri-implantiitin taudinkuville tyypilliseen kova- ja pehmytkudosten tuhoutumiseen ja lopulta hampaiden ja implanttien löystymiseen ja irtoamiseen. Tutkimuksen tavoitteina oli selvittää tiettyjen entsyymien ja proteiinien esiintyminen, ilmentyminen ja aktiivisuus hampaiden kiinnityskudosten tulehduksen isäntävasteessa, tarkentaa MMP-8-entsyymin todellisia vaikutuksia elävässä elimistössä poistogeeni (knock-out) -hiirimallilla sekä lisäksi syventää tietämystä elimistön oman puolustusvasteen roolista kroonisessa tulehduksessa. Hypoteesina oli edellä mainittujen molekyylien mahdollinen aktiivisuus parodontiittissa ja peri-implantiitissa sekä aktiivisuuden merkitys parodontiitin ja peri-implantiitin diagnostiikassa, isännän omassa puolustuksessa ja taudinkuvalle tyypillisessä kiinnityskudostuhossa. Tutkittujen molekyylien aktiivisuus ja ilmentyminen tulehtuneessa ientasku- ja peri-implanttinesteessä tai ienkudoksessa voimistuu tulehduksen vakavuuden myötä. Näiden molekyylien ja entsyymien kohonneet tasot ja aktiivisuuden nousu kuvastavat parodontaali- ja peri-implantti-infektioiden vakavuutta ja osallistuvat tulehduksen syntyyn ja etenemiseen toimien samalla tulehduksen biomarkkereina. MMP-8 toimii osittain suojaavana molekyylinä P. gingivaliksen aiheuttamassa paikallisessa ja systeemisessä tulehdusvasteessa. Totaalinen MMP-8 puutos johtaa lisääntyneeseen alveoliluukatoon sekä seerumin lipoproteiinien muutokseen ateroskleroottisempaan suuntaan. Parodontiitin hoidossa tulisikin keskittyä patologisesti kohonneiden MMP-8 tasojen alentamiseen lähelle normaalia, fysiologista tasoa sen sijaan että MMP-8 tuotantoa ja toimintaa pyritään kokonaan estämään

    Gingival crevicular fluid matrix metalloproteinase-25 and-26 levels in periodontal disease

    No full text
    WOS: 000241878800014PubMed ID: 16584348Background: Tissue destruction associated with the progression of periodontal disease is caused by a cascade of host and microbial proteolytic enzymes. Host-derived matrix metalloproteinases (MMPs) play an important role in the degradation of the extracellular matrix. Leukolysin/membrane-type 6 (MT-6)/MMP-25, the latest member of the MT-MMP subgroup of the MMP family, is primarily expressed by neutrophils and involved in extracellular matrix turnover. Matrilysin-2/MMP-26 (endometase), a novel member of the matrilysin subgroup of the MMP family, can degrade the extracellular matrix, alpha 1-antitrypsin, and activate pro-MMP-9. Our study aimed to examine the levels, molecular forms, and degrees of activation of MMP-25 and MMP-26 in gingival crevicular fluid (GCF) from patients with different periodontal diseases. Methods: A total of 105 subjects, 35 with generalized aggressive periodontitis (GAgP), 29 with chronic periodontitis (CP), 20 with gingivitis, and 21 periodontally healthy subjects, were included in this study. Periodontal status was evaluated by measuring probing depth, clinical attachment loss, presence of bleeding on probing, and plaque. GCF MMP-25 and MMP-26 levels were analyzed by computer- quantitated Western immunoblotting using specific antibodies. Results: The 57-kDa soluble pro-MMP-25 and 45- to 47-kDa active form of MMP-25 were detected by Western immunoblots in CP and GAgP GCF, and lesser levels of these soluble MMP-25 immunoreactive bands were detected in gingivitis GCF. An enhanced and similar degree of MMP-25 activation was found in GAgP, CP, and gingivitis groups. There were no detectable MMP-25 immunoreactivities in the healthy subjects' GCF. GAgP and CP groups had elevated GCF MMP-26 levels and degrees of activation compared to the gingivitis and healthy groups (P < 0.008). The gingivitis group had higher GCF MMP-26 levels and degree of activation compared to the healthy group (P < 0.008). Conclusions: The present study demonstrated the presence of soluble or shed forms of MMP-25 and MMP-26 in GCF of patients with different periodontal diseases. Increased levels and activation of MMP-25 and MMP-26 in GCF are associated with an enhanced severity of periodontal inflammation, suggesting that these novel MMPs can participate in the progression of periodontal diseases. They may prove to be diagnostically useful and could be targets of medication in the future

    Local and Systemic Responses in Matrix Metalloproteinase 8-Deficient Mice during Porphyromonas gingivalis-Induced Periodontitis▿

    No full text
    Periodontitis is a bacterium-induced chronic inflammation that destroys tissues that attach teeth to jaw bone. Pathologically excessive matrix metalloproteinase 8 (MMP-8) is among the key players in periodontal destruction by initiating type I collagen degradation. We studied MMP-8 in Porphyromonas gingivalis-induced periodontitis by using MMP-8-deficient (MMP8−/−) and wild-type (WT) mice. Alveolar bone loss, inflammatory mediator expression, serum immunoglobulin, and lipoprotein responses were investigated to clarify the role of MMP-8 in periodontitis and systemic inflammatory responses. P. gingivalis infection induced accelerated site-specific alveolar bone loss in both MMP8−/− and WT mice relative to uninfected mice. The most extensive bone degradation took place in the P. gingivalis-infected MMP8−/− group. Surprisingly, MMP-8 significantly attenuated (P < 0.05) P. gingivalis-induced site-specific alveolar bone loss. Increased alveolar bone loss in P. gingivalis-infected MMP8−/− and WT mice was associated with increase in gingival neutrophil elastase production. Serum lipoprotein analysis demonstrated changes in the distribution of high-density lipoprotein (HDL) and very-low-density lipoprotein (VLDL) particles; unlike the WT mice, the MMP8−/− mice underwent a shift toward a smaller HDL/VLDL particle sizes. P. gingivalis infection increased the HDL/VLDL particle size in the MMP8−/− mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total lipopolysaccharide activity and the immunoglobulin G-class antibody level in response to P. gingivalis were significantly elevated in both infected mice groups. Thus, MMP-8 appears to act in a protective manner inhibiting the development of bacterium-induced periodontal tissue destruction, possibly through the processing anti-inflammatory cytokines and chemokines. Bacterium-induced periodontitis, especially in MMP8−/− mice, is associated with systemic inflammatory and lipoprotein changes that are likely involved in early atherosclerosis

    In vivo regulation of active matrix metalloproteinase-8 (aMMP-8) in periodontitis: from transcriptomics to real-time online diagnostics and treatment monitoring

    No full text
    Background: This study investigated in vivo regulation and levels of active matrix metalloproteinase-8 (aMMP-8), a major collagenolytic protease, in periodontitis. Methods: Twenty-seven adults with chronic periodontitis (CP) and 30 periodontally healthy controls (HC) were enrolled in immunohistochemistry and transcriptomics analytics in order to assess Treponema denticola (Td) dentilisin and MMP-8 immunoexpression, mRNA expression of MMP-8 and its regulators (IL-1β, MMP-2, MMP-7, TIMP-1). Furthermore, the periodontal anti-infective treatment effect was monitored by four different MMP-8 assays (aMMP-8-IFMA, aMMP-8-Oralyzer, MMP-8-activity [RFU/minute], and total MMP-8 by ELISA) among 12 CP (compared to 25 HC). Results: Immunohistochemistry revealed significantly more Td-dentilisin and MMP-8 immunoreactivities in CP vs. HC. Transcriptomics revealed significantly elevated IL-1β and MMP-7 RNA expressions, and MMP-2 RNA was slightly reduced. No significant differences were recorded in the relatively low or barely detectable levels of MMP-8 mRNAs. Periodontal treatment significantly decreased all MMP-8 assay levels accompanied by the assessed clinical indices (periodontal probing depths, bleeding-on-probing, and visual plaque levels). However, active but not total MMP-8 levels persisted higher in CP than in periodontally healthy controls. Conclusion: In periodontal health, there are low aMMP-8 levels. The presence of Td-dentilisin in CP gingivae is associated with elevated aMMP-8 levels, potentially contributing to a higher risk of active periodontal tissue collagenolysis and progression of periodontitis. This can be detected by aMMP-8-specific assays and online/real-time aMMP-8 chair-side testing
    corecore