43 research outputs found

    Mechanisms of gut epithelial barrier impairment caused by food emulsifiers polysorbate 20 and polysorbate 80

    Get PDF
    Background The rising prevalence of many chronic diseases related to gut barrier dysfunction coincides with the increased global usage of dietary emulsifiers in recent decades. We therefore investigated the effect of the frequently used food emulsifiers on cytotoxicity, barrier function, transcriptome alterations, and protein expression in gastrointestinal epithelial cells. Methods Human intestinal organoids originating from induced pluripotent stem cells, colon organoid organ‐on‐a‐chip, and liquid–liquid interface cells were cultured in the presence of two common emulsifiers: polysorbate 20 (P20) and polysorbate 80 (P80). The cytotoxicity, transepithelial electrical resistance (TEER), and paracellular‐flux were measured. Immunofluorescence staining of epithelial tight‐junctions (TJ), RNA‐seq transcriptome, and targeted proteomics were performed. Results Cells showed lysis in response to P20 and P80 exposure starting at a 0.1% (v/v) concentration across all models. Epithelial barrier disruption correlated with decreased TEER, increased paracellular‐flux and irregular TJ immunostaining. RNA‐seq and targeted proteomics analyses demonstrated upregulation of cell development, signaling, proliferation, apoptosis, inflammatory response, and response to stress at 0.05%, a concentration lower than direct cell toxicity. A proinflammatory response was characterized by the secretion of several cytokines and chemokines, interaction with their receptors, and PI3K‐Akt and MAPK signaling pathways. CXCL5, CXCL10, and VEGFA were upregulated in response to P20 and CXCL1, CXCL8 (IL‐8), CXCL10, LIF in response to P80. Conclusions The present study provides direct evidence on the detrimental effects of food emulsifiers P20 and P80 on intestinal epithelial integrity. The underlying mechanism of epithelial barrier disruption was cell death at concentrations between 1% and 0.1%. Even at concentrations lower than 0.1%, these polysorbates induced a proinflammatory response suggesting a detrimental effect on gastrointestinal health

    Symptoms and Needs of Patients with Advanced Lung Cancer: Early Prevalence Assessment

    Get PDF
    Background: Little is known on symptom burden, psychosocial needs, and perception of prognosis in advanced lung cancer patients at the time of diagnosis, although early assessment is strongly recommended within the setting of daily routine care. Methods: Twelve study sites cross-sectionally assessed symptoms and psychosocial needs of patients suffering from newly diagnosed incurable lung cancer. Assessment comprised NCCN distress thermometer, FACT-L, SEIQoL-Q, PHQ-4, and shortened and modified SCNS-SF-34 questionnaires. Additional prognostic information from both patients and physicians were collected. Results: A total of 208 patients were evaluated. Mean age was 63.6 years, 58% were male, 84% suffered from stage IV lung cancer, and 71% had an ECOG performance status of 0–1. Mean distress level was 5.4 (SD 2.5), FACT-L total score was 86 (21.5), and TOI 50.5 (14.9). PHQ-4 was 4.6 (3.3), and shortened and modified SCNS-SF-34 showed 9 (8.7) unmet needs per patient. According to their physicians’ perspective, 98.1% of patients were reflecting on and 85.2% were accepting incurability, while 26.5% of patients considered the treatment to be of curative intent. Conclusion: Our findings emphasize substantial domains of symptom burden seen in newly diagnosed, incurable lung cancer patients. Oncologists should be aware of these features and address prognostic issues early in the disease trajectory to facilitate opportunities to improve coping, advance care planning, and appropriate integration of palliative care, thus improving quality of life

    Disrupted epithelial permeability as a predictor of severe COVID-19 development

    Get PDF
    BackgroundAn impaired epithelial barrier integrity in the gastrointestinal tract is important to the pathogenesis of many inflammatory diseases. Accordingly, we assessed the potential of biomarkers of epithelial barrier dysfunction as predictive of severe COVID‐19.MethodsLevels of bacterial DNA and zonulin family peptides (ZFP) as markers of bacterial translocation and intestinal permeability and a total of 180 immune and inflammatory proteins were analyzed from the sera of 328 COVID‐19 patients and 49 healthy controls.ResultsSignificantly high levels of circulating bacterial DNA were detected in severe COVID‐19 cases. In mild COVID‐19 cases, serum bacterial DNA levels were significantly lower than in healthy controls suggesting epithelial barrier tightness as a predictor of a mild disease course. COVID‐19 patients were characterized by significantly elevated levels of circulating ZFP. We identified 36 proteins as potential early biomarkers of COVID‐19, and six of them (AREG, AXIN1, CLEC4C, CXCL10, CXCL11, and TRANCE) correlated strongly with bacterial translocation and can be used to predict and discriminate severe cases from healthy controls and mild cases (area under the curve (AUC): 1 and 0.88, respectively). Proteomic analysis of the serum of 21 patients with moderate disease at admission which progressed to severe disease revealed 10 proteins associated with disease progression and mortality (AUC: 0.88), including CLEC7A, EIF4EBP1, TRANCE, CXCL10, HGF, KRT19, LAMP3, CKAP4, CXADR, and ITGB6.ConclusionOur results demonstrate that biomarkers of intact or defective epithelial barriers are associated with disease severity and can provide early information on the prediction at the time of hospital admission

    Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19.

    Get PDF
    Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections

    Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors

    Full text link
    Background: Immune checkpoint inhibitors (ICIs) are among the most promising treatment options for melanoma and non-small cell lung cancer (NSCLC). While ICIs can induce effective anti-tumor responses, they may also drive serious immune-related adverse events (irAEs). Identifying biomarkers to predict which patients will suffer from irAEs would enable more accurate clinical risk-benefit analysis for ICI treatment and may also shed light on common or distinct mechanisms underpinning treatment success and irAEs. Methods: In this prospective multi-center study, we combined a multi-omics approach including unbiased single-cell profiling of over 300 peripheral blood mononuclear cell (PBMC) samples and high-throughput proteomics analysis of over 500 serum samples to characterize the systemic immune compartment of patients with melanoma or NSCLC before and during treatment with ICIs. Findings: When we combined the parameters obtained from the multi-omics profiling of patient blood and serum, we identified potential predictive biomarkers for ICI-induced irAEs. Specifically, an early increase in CXCL9/CXCL10/CXCL11 and interferon-γ (IFN-γ) 1 to 2 weeks after the start of therapy are likely indicators of heightened risk of developing irAEs. In addition, an early expansion of Ki-67+ regulatory T cells (Tregs) and Ki-67+ CD8+ T cells is also likely to be associated with increased risk of irAEs. Conclusions: We suggest that the combination of these cellular and proteomic biomarkers may help to predict which patients are likely to benefit most from ICI therapy and those requiring intensive monitoring for irAEs. Funding: This work was primarily funded by the European Research Council, the Swiss National Science Foundation, the Swiss Cancer League, and the Forschungsförderung of the Kantonsspital St. Gallen

    Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors.

    Get PDF
    BACKGROUND:Cell-free tumor-derived DNA (ctDNA) allows non-invasive monitoring of cancers, but its utility in renal cell cancer (RCC) has not been established. METHODS:Here, a combination of untargeted and targeted sequencing methods, applied to two independent cohorts of patients (n = 91) with various renal tumor subtypes, were used to determine ctDNA content in plasma and urine. RESULTS:Our data revealed lower plasma ctDNA levels in RCC relative to other cancers of similar size and stage, with untargeted detection in 27.5% of patients from both cohorts. A sensitive personalized approach, applied to plasma and urine from select patients (n = 22) improved detection to ~ 50%, including in patients with early-stage disease and even benign lesions. Detection in plasma, but not urine, was more frequent amongst patients with larger tumors and in those patients with venous tumor thrombus. With data from one extensively characterized patient, we observed that plasma and, for the first time, urine ctDNA may better represent tumor heterogeneity than a single tissue biopsy. Furthermore, in a subset of patients (n = 16), longitudinal sampling revealed that ctDNA can track disease course and may pre-empt radiological identification of minimal residual disease or disease progression on systemic therapy. Additional datasets will be required to validate these findings. CONCLUSIONS:These data highlight RCC as a ctDNA-low malignancy. The biological reasons for this are yet to be determined. Nonetheless, our findings indicate potential clinical utility in the management of patients with renal tumors, provided improvement in isolation and detection approaches

    Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors.

    Get PDF
    BACKGROUND Immune checkpoint inhibitors (ICIs) are among the most promising treatment options for melanoma and non-small cell lung cancer (NSCLC). While ICIs can induce effective anti-tumor responses, they may also drive serious immune-related adverse events (irAEs). Identifying biomarkers to predict which patients will suffer from irAEs would enable more accurate clinical risk-benefit analysis for ICI treatment and may also shed light on common or distinct mechanisms underpinning treatment success and irAEs. METHODS In this prospective multi-center study, we combined a multi-omics approach including unbiased single-cell profiling of over 300 peripheral blood mononuclear cell (PBMC) samples and high-throughput proteomics analysis of over 500 serum samples to characterize the systemic immune compartment of patients with melanoma or NSCLC before and during treatment with ICIs. FINDINGS When we combined the parameters obtained from the multi-omics profiling of patient blood and serum, we identified potential predictive biomarkers for ICI-induced irAEs. Specifically, an early increase in CXCL9/CXCL10/CXCL11 and interferon-γ (IFN-γ) 1 to 2 weeks after the start of therapy are likely indicators of heightened risk of developing irAEs. In addition, an early expansion of Ki-67+ regulatory T cells (Tregs) and Ki-67+ CD8+ T cells is also likely to be associated with increased risk of irAEs. CONCLUSIONS We suggest that the combination of these cellular and proteomic biomarkers may help to predict which patients are likely to benefit most from ICI therapy and those requiring intensive monitoring for irAEs. FUNDING This work was primarily funded by the European Research Council, the Swiss National Science Foundation, the Swiss Cancer League, and the Forschungsförderung of the Kantonsspital St. Gallen
    corecore