39 research outputs found

    Microporous polymer network films covalently bound to gold electrodes

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Covalent attachment of a microporous polymer network (MPN) on a gold surface is presented. A functional bromophenyl-based self-assembled monolayer (SAM) formed on the gold surface acts as co-monomer in the polymerisation of the MPN yielding homogeneous and robust coatings. Covalent binding of the films to the electrode is confirmed by SEIRAS measurements.EC/FP7/278593/EU/Organic Zeolites/ORGZEODFG, EXC 314, Unifying Concepts in CatalysisBMBF, 03X5524, DELKAT - Hydrophobe Nanoreaktor Templatierung - Eine Tool-Box fĂŒr optimierte Elektrokatalysatore

    Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of Geobacter sulfurreducens Biofilms.

    Get PDF
    Extracellular electron transfer (EET) in microorganisms is prevalent in nature and has been utilized in functional bioelectrochemical systems. EET of Geobacter sulfurreducens has been extensively studied and has been revealed to be facilitated through c-type cytochromes, which mediate charge between the electrode and G. sulfurreducens in anodic mode. However, the EET pathway of cathodic conversion of fumarate to succinate is still under debate. Here, we apply a variety of analytical methods, including electrochemistry, UV-vis absorption and resonance Raman spectroscopy, quartz crystal microbalance with dissipation, and electron microscopy, to understand the involvement of cytochromes and other possible electron-mediating species in the switching between anodic and cathodic reaction modes. By switching the applied bias for a G. sulfurreducens biofilm coupled to investigating the quantity and function of cytochromes, as well as the emergence of Fe-containing particles on the cell membrane, we provide evidence of a diminished role of cytochromes in cathodic EET. This work sheds light on the mechanisms of G. sulfurreducens biofilm growth and suggests the possible existence of a nonheme, iron-involving EET process in cathodic mode.N.K. was supported by a Royal Society Newton International Fellowship, NF160054. E.R., X.F. and N.H. acknowledge the European Research Council (ERC) Consolidator Grant “MatEnSAP” (682833). S. K. was supported by a Marie SkƂodowska-Curie Fellowship (EMES, 744317). K. H. Ly acknowledges the Open Topic Postdoc Programme of the Technische UniversitĂ€t Dresden and the Marie Sklodowska Curie IF, GAN 701192. The TEM was funded through the EPSRC underpinning multi-user equipment call (EP/P030467/1

    Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide

    Get PDF
    The integration of enzymes with synthetic materials allows efficient electrocatalysis and production of solar fuels. Here, we couple formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough (DvH) to metal oxides for catalytic CO2 reduction and report an in‐depth study of the resulting enzyme–material interface. Protein film voltammetry (PFV) demonstrates the stable binding of FDH on metal‐oxide electrodes and reveals the reversible and selective reduction of CO2 to formate. Quartz crystal microbalance (QCM) and attenuated total reflection infrared (ATR‐IR) spectroscopy confirm a high binding affinity for FDH to the TiO2 surface. Adsorption of FDH on dye‐sensitized TiO2 allows for visible‐light‐driven CO2 reduction to formate in the absence of a soluble redox mediator with a turnover frequency (TOF) of 11±1 s−1. The strong coupling of the enzyme to the semiconductor gives rise to a new benchmark in the selective photoreduction of aqueous CO2 to formate.H2020 European Research Council. Grant Number: MatEnSAP (682833) Royal Society. Grant Number: NF160054 Christian Doppler Forschungsgesellschaft. Grant Number: Sustainable SynGas Chemistry H2020 Fast Track to Innovation. Grant Number: GA 81085

    Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells

    Get PDF
    Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p-type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton-reducing Si j IO-TiO2 j H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias-free) water splitting by wiring Si j IO-TiO2 j H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si j IO-TiO2 j H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z-scheme that replaces the non-complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode

    Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction.

    Get PDF
    The rational control of forming and stabilizing reaction intermediates to guide specific reaction pathways remains to be a major challenge in electrocatalysis. In this work, we report a surface active-site engineering approach for modulating electrocatalytic CO2 reduction using the macrocycle cucurbit[6]uril (CB[6]). A pristine gold surface functionalized with CB[6] nanocavities was studied as a hybrid organic-inorganic model system that utilizes host-guest chemistry to influence the heterogeneous electrocatalytic reaction. The combination of surface-enhanced infrared absorption (SEIRA) spectroscopy and electrocatalytic experiments in conjunction with theoretical calculations supports capture and reduction of CO2 inside the hydrophobic cavity of CB[6] on the gold surface in aqueous KHCO3 at negative potentials. SEIRA spectroscopic experiments show that the decoration of gold with the supramolecular host CB[6] leads to an increased local CO2 concentration close to the metal interface. Electrocatalytic CO2 reduction on a CB[6]-coated gold electrode indicates differences in the specific interactions between CO2 reduction intermediates within and outside the CB[6] molecular cavity, illustrated by a decrease in current density from CO generation, but almost invariant H2 production compared to unfunctionalized gold. The presented methodology and mechanistic insight can guide future design of molecularly engineered catalytic environments through interfacial host-guest chemistry

    IR Spektro-Elektrochemie von einer adsorbierten sauerstofftoleranten [NiFe] Hydrogenase

    No full text
    Hydrogenases are metalloenzymes, catalyzing the reversible oxidation of molecular hydrogen into two protons and two electrons. The 'Knallgasbacterium' Ralstonia eutropha H16 (Re) is one of the few examples, harboring several [NiFe] hydrogenases that established mechanisms to enable catalytic conversion of H2 in the presence of O2. In order to exploit the catalytic potential of these oxygen-tolerant hydrogenases, also in view of possible biotechnological applications in biofuel cells, an efficient electronic communication between the enzyme and electrically conducting surface is required. Hence, for optimum performance, an in-depth understanding of the enzyme-surface interactions is needed. This thesis presents an interdisciplinary approach providing detailed insights into the adsorption parameters of heterodimeric membrane-bound [NiFe] hydrogenase (MBH) species of Re on various electrode materials. The first part was dedicated to adsorption studies of oxygen-tolerant MBH on biocompatibly coated Au electrodes by protein film voltammetry (PFV), surface enhanced IR absorption (SEIRA) spectro-electrochemistry, atomic force microscopy (AFM), and ellipsometry in order to elucidate the enzymes catalytic activity, structure, integrity, and surface coverage. Results were obtained for charged and hydrophobic surfaces. Electrocatalytic efficiencies correlated with the mode of protein adsorption on the electrode provided valuable insights in the orientational configuration, which were complemented with molecular dynamics (MD) simulations as well as density functional theory (DFT) calculations, carried out in collaboration. Hence, proposed orientational configurations provided by different accessible binding anchors of the MBH were discussed and experimentally verified by SEIRA spectro-electrochemical investigations. The obtained results suggested that, in particular, an immobilization of heterodimeric MBH on slightly negatively charged surfaces was most beneficial for an efficient interfacial electron transfer (ET). Hereby, the suggested anchoring via the isolated transmembrane helix still allowed a flexibility regarding rotational and translational motions of the large protein backbone elative to the surface. This led to an effective orientation, enabling solely direct ET of the adsorbed active enzymes. In general, applied potentials revealed reorientations under preservation of the enzyme’s initial binding anchors. In addition, redox changes at the active site of MBH bound on a positively charged biocompatible Au electrode were investigated under turnover conditions as well as under the influence of applied potentials. The second part of this thesis introduced a novel in situ IR spectro-electrochemical approach to monitor protein adsorption on two different transparent conductive oxide (TCO) materials, i.e. antimony-doped tin oxide (ATO) and tin-rich indium oxide (ITOTR). Using horse heart cytochrome c (cyt c) as a model system, protein adsorption on planar ATO and ITOTR thin film electrodes was monitored spectroscopically. Within these studies, a selective protein binding via a histidine affinity tag (His-tag) to the unmodified metal oxide surfaces of ATO and ITOTR was shown. Using the advantage of a controlled immobilization via this affinity tag, Re His-tagged MBH (his-MBH) was directly adsorbed onto ITOTR and also studied in situ by an attenuated total reflection IR (ATR-IR) spectro-electrochemical approach, thereby demonstrating the integrity of the adsorbed protein. Simultaneous PFV studies revealed a remarkable bi-directional activity for H2 cleavage and formation of his-MBH on ITOTR. The latter effect may be related to the specific semiconductor-enzyme interactions, which were discussed in comparison to the unspecific bound Re strep-tagged MBH on the electrode material. Finally, ATR and SEIRA measurements of cyt c and both MBH variants were compared with respect to the signal enhancement, which eventually allowed for an estimation of the catalytic activity of MBH species on different surfaces.Hydrogenasen sind Metalloenzyme, die reversibel die Oxidation von molekularem Wasserstoff in Protonen und Elektronen katalysieren. Das ”Knallgasbakterium“ Ralstonia eutropha H16 (Re) ist eines der wenigen Beispiele, das mehrere [NiFe] Hydrogenasen besitzt, welche Mechanismen der katalytischen H2-Umsetzung unter atmosphĂ€rischem Sauerstoffgehalt entwickelt haben. Um das katalytische Potential dieser Sauerstoff-toleranten Hydrogenasen zu erschliessen, insbesondere hinsichtlich möglicher biotechnologischer Anwendungen in biologischen Brennstoffzellen, ist eine effiziente elektronische Kommunikation zwischen Enzym und leitfĂ€higer OberflĂ€che erforderlich. Dies bedingt ein tiefgreifendes VerstĂ€ndnis der Enzym-OberflĂ€chen-Interaktionen. In dieser Arbeit wurde ein interdisziplinĂ€rer Ansatz vorgestellt, der detaillierte Einblicke in die involvierten Adsorptionsparamater der heterodimeren membrangebundenen [NiFe] Hydrogenase (MBH) aus Re auf verschiedenen Elektrodenmaterialien ermöglicht. Der erste Teil dieser Arbeit ist der Adsorptionsstudie der sauerstofftoleranten MBH auf biokompatibel beschichteten Goldelektroden gwidmet. Anhand der Proteinfilm-Voltammetrie (PFV), der OberflĂ€chenverstĂ€rkte Infrarot-Absorptions (SEIRA) Spektroelektrochemie Rasterkraftmikroskopie (AFM) und Ellipsometrie wurden die katalytische AktivitĂ€t des Enzyms, sowie dessen Struktur, IntegritĂ€t und OberflĂ€chenbeladung untersucht. HierfĂŒr wurden Resultate der MBH auf geladenen und hydrophoben OberflĂ€chen erhalten. Die Korrelation zwischen der elektrokatalytischen Effizienz und der Art der OberflĂ€chenanbindung des Enzyms auf der Elektrode lieferte wertvolle Informationen zur Orientierung des Enzymes. Die experimentellen Daten wurden durch Molekular-Simulationen und Berechnungen von IR-Spektren mit Hilfe der Dichtefunktionaltheorie (DFT) komplementiert, die in Kooperation durchgefĂŒhrt wurden. Die vorgeschlagenen Orientierungskonfigurationen, welche auf unterschiedlichen zugĂ€nglichen Bindungsankern an der MBH basieren, wurden diskutiert und konnten mittels einer SEIRA-spektroelektrochemischen Studie experimentell nachgewiesen werden. Die so erhaltenen Ergebnisse schlagen insbesondere fĂŒr eine Immobilizierung der heterodimeren MBH auf leicht negativ geladenen OberflĂ€chen einen optimierten Elektronentransfer an der Enzym-Elektroden-GrenzflĂ€che vor. Hierbei wird eine Immobilisierung der MBH ĂŒber ihre isolierte Transmembran-Helix angenommen, die ĂŒber diese Anbindung auch eine FlexibilitĂ€t des ProteingerĂŒsts hinsichtlich Rotations- als auch Translationsbewegungen relativ zur OberflĂ€che erlaubt. Dies fĂŒhrt zu einer vorteilhaften Orientierung, die einen direkten Elektronentransfer aller adsorbierten und aktiven Enzyme ermöglicht. Angelegte Elektrodenpotentiale fĂŒhrten teilweise zu Reorientierungen bei Erhalt der ursprĂŒnglichen Bindungsanker zwischen Enzym- und ElektrodenoberflĂ€che. ZusĂ€tzlich konnten auch Änderungen der RedoxzustĂ€nde des aktiven Zentrums der MBH unter Turnover-Bedingungen sowie unter dem Einfluss angelegter Potentiale untersucht werden. Der zweite Teil dieser Arbeit fĂŒhrte einen neuen in situ IR spektroelektrochemischen Ansatz zur Beobachtung der Proteinadsorption auf zwei unterschiedlichen, transparenten und leitfĂ€higen Oxidmaterialen (TCO) ein, Antimon-dotiertes Zinn Oxid (ATO) und zinnreiches Indium Oxid (ITOTR). Unter Verwendung von Pferdeherz-Cytochrome c (cyt c) als Modelsystem wurde die Proteinadsorption auf planaren ATO- und ITOTR-DĂŒnnschichtelektroden spektroskopisch verfolgt. In diesem Zusammenhang konnte eine selektive Proteinanbindung ĂŒber einen Histidin-AffinitĂ€tstag (His-tag) an der isolierten Transmembran-Helixauf unmodifizierten Metalloxid-OberflĂ€chen nachgewiesen werden. Diese Art der Anbindung wurde genutzt, um His-getaggte MBH (His-MBH) von Re direkt an die ITOTR Elektroden anzubinden und mittels eines in situ ATR-IR-spektroelektrochemischen Anzatzes zu untersuchen. Hierdurch konnte sowohl der Erhalt der SekundĂ€rstruktur wie auch der strukturellen IntegritĂ€t des aktiven Zentrums an der OberflĂ€che demonstriert werden. Simultan ausgefĂŒhrte PFV-Studien von his-MBH auf ITOTR wiesen eine erstaunliche bi-direktionale AktivitĂ€t zur H2-Oxidation und -Reduktion auf. Die ungewöhnliche H2-Reduktion der His-MBH wurde auf spezifische Halbleiter-Enzym-Interaktionen zurĂŒckgefĂŒhrt, welche im Zusammenhang mit der unspezifisch gebundenen streptag MBH auf ITOTR diskutiert wurden. Zum Abschluß wurden Ergebnisse der ATR-IR und SEIRA Spektroskopie von cyt c und beiden MBH Varianten hinsichtlich der SignalverstĂ€rkung verglichen und letztendlich eine AbschĂ€tzung der katalytischen AktivitĂ€t der MBH auf verschiedenen OberflĂ€chen durchgefĂŒhrt
    corecore