29 research outputs found
Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution
AbstractTo account for frequently documented low-temperature deviations from Arrhenius rate law, the proposed expansion of inverse activation energy against inverse temperature is shown to yield a first order linearizing parameter which is formally correlated with Tsallis non-extensive classical statistical mechanics. Its sign provides a heuristic criterion, especially appealing in biochemistry, for assigning deviations as due either: (i) to quantum mechanical under-barrier tunneling, or (ii) to 'classical' collective phenomena. For (i), an explicit relationship is here derived in terms of barrier features. Case (ii) typically occurs in enzymatic or heterogeneous catalysis, in membrane mediated processes and in those controlled by diffusion or by transport in general
Synthesis of 2-arylbenzimidazoles under mild conditions catalyzed by a heteropolyacid-containing task-specific ionic liquid and catalyst investigation by electrospray (tandem) mass spectrometry
A task-specific ionic liquid constituted by a Bronsted acid (1-(3-sulfopropyl)-3-methyl-imidazolium hydrogen sulfate) as the cation, namely MSI, and by [PW12O40](3-) as the triply charged counter-anion, namely PW (a heteropolyacid derivative), was used as an efficient catalyst for the condensation reaction between aldehydes and o-phenylenediamines.A task-specific ionic liquid constituted by a Bronsted acid (1-(3-sulfopropyl)-3-methyl-imidazolium hydrogen sulfate) as the cation, namely MSI, and by [PW12O40]3− as the triply charged counter-anion, namely PW (a heteropolyacid derivative), was used as a5856941869422sem informaçãosem informaçã
Structural organization and supramolecular interactions of the task-specific ionic liquid 1-methyl-3-carboxymethylimidazolium chloride: solid, solution, and gas phase structures
Using a set of different techniques, which included single crystal X-ray, NMR, UV-vis, conductivity measurements, SAXS (small angle X-rays), ESI-MS(/MS) (electrospray (tandem) mass spectrometry), and theoretical calculations, an ample study of the structural organization and supramolecular interaction of the task-specific ionic liquid 1-methyl-3-carboxymethylimidazolium chloride (named MAI.Cl) was conducted. All techniques allowed for comprehensive investigation in the solid state, solution, and gas-phase behavior of MAI.Cl. Most relevant interactions are demonstrated showing the importance of hydrogen bonding to supramolecular organization of MAI.Cl in different states and its tendency to aggregate in aqueous solutions. © 2014 American Chemical Society.Using a set of different techniques, which included single crystal X-ray, NMR, UV–vis, conductivity measurements, SAXS (small angle X-rays), ESI-MS(/MS) (electrospray (tandem) mass spectrometry), and theoretical calculations, an ample study of the structu118311787817889CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFsem informaçãosem informaçãosem informaçãosem informaçãosem informaçãoHallett, J.P., Welton, T., Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2 (2011) Chem. Rev., 111, p. 3508. , - 3576Dupont, J., De Souza, R.F., Suarez, P.A.Z., Ionic Liquid (Molten Salt) Phase Organometallic Catalysis (2002) Chem. Rev., 102, p. 3667. , - 3691Welton, T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis (1999) Chem. Rev., 99, p. 2071. , - 2083Plechkova, N.V., Seddon, K.R., Applications of Ionic Liquids in the Chemical Industry (2008) Chem. Soc. Rev., 37, p. 123. , - 150Dupont, J., From Molten Salts to Ionic Liquids: A "nano" Journey (2011) Acc. Chem. Res., 44, p. 1223. , - 1231Neto, B.A.D., Spencer, J., The Impressive Chemistry, Applications and Features of Ionic Liquids: Properties, Catalysis and Catalysts and Trends (2012) J. Braz. Chem. Soc., 23, p. 987. , - 1007Visser, A.E., Swatloski, R.P., Reichert, W.M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J.H., Rogers, R.D., Task-Specific Ionic Liquids for the Extraction of Metal Ions from Aqueous Solutions (2001) Chem. Commun., p. 135. , - 136Sebesta, R., Kmentova, I., Toma, S., Catalysts with Ionic Tag and Their Use in Ionic Liquids (2008) Green Chem., 10, p. 484. , - 496Lombardo, M., Trombini, C., Ionic Tags in Catalyst Optimization: Beyond Catalyst Recycling (2010) ChemCatChem, 2, p. 135. , - 145Lee, S.G., Functionalized Imidazolium Salts for Task-Specific Ionic Liquids and Their Applications (2006) Chem. Commun., p. 1049. , - 1063Luska, K.L., Moores, A., Functionalized Ionic Liquids for the Synthesis of Metal Nanoparticles and their Application in Catalysis (2012) ChemCatChem, 4, p. 1534. , - 1546Kolbeck, C., Killian, M., Maier, F., Paape, N., Wasserscheid, P., Steinruck, H.P., Surface Characterization of Functionalized Imidazolium-Based Ionic Liquids (2008) Langmuir, 24, p. 9500. , - 9507Dupont, J., Scholten, J.D., On the Structural and Surface Properties of Transition-Metal Nanoparticles in Ionic Liquids (2010) Chem. Soc. Rev., 39, p. 1780. , - 1804Weingaertner, H., Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies (2008) Angew. Chem., Int. Ed., 47, p. 654. , - 670Dupont, J., On the Solid, Liquid and Solution Structural Organization of Imidazolium Ionic Liquids (2004) J. Braz. Chem. Soc., 15, p. 341. , - 350Mele, A., Tran, C.D., Lacerda, S.H.D., The Structure of a Room-Temperature Ionic Liquid with and without Trace Amounts of Water: The Role of C-H···O and C-H···F Interactions in 1- n -Butyl-3-methylimidazolium Tetrafluoroborate (2003) Angew. Chem., Int. Ed., 42, p. 4364. , - 4366D'Anna, F., Ferrante, F., Noto, R., Geminal Ionic Liquids: A Combined Approach to Investigate Their Three-Dimensional Organisation (2009) Chem.-Eur. J., 15, p. 13059. , - 13068Zhang, L.F., Fu, X.L., Gao, G.H., Anion-Cation Cooperative Catalysis by Ionic Liquids (2011) ChemCatChem, 3, p. 1359. , - 1364Fumino, K., Wulf, A., Ludwig, R., The Cation-Anion Interaction in Ionic Liquids Probed by Far-Infrared Spectroscopy (2008) Angew. Chem., Int. Ed., 47, p. 3830. , - 3834Zahn, S., Uhlig, F., Thar, J., Spickermann, C., Kirchner, B., Intermolecular Forces in an Ionic Liquid (Mmim Cl) versus Those in a Typical Salt (NaCl) (2008) Angew. Chem., Int. Ed., 47, p. 3639. , - 3641Singh, T., Rao, K.S., Kumar, A., Effect of Ethylene Glycol and Its Derivatives on the Aggregation Behavior of an Ionic Liquid 1-Butyl-3-methyl Imidazolium Octylsulfate in Aqueous Medium (2012) J. Phys. Chem. B, 116, p. 1612. , - 1622Kossmann, S., Thar, J., Kirchner, B., Hunt, P.A., Welton, T., Cooperativity in Ionic Liquids (2006) J. Chem. Phys., 124, p. 174506Blesic, M., Lopes, A., Melo, E., Petrovski, Z., Plechkova, N.V., Lopes, J.N.C., Seddon, K.R., Rebelo, L.P.N., On the Self-Aggregation and Fluorescence Quenching Aptitude of Surfactant Ionic Liquids (2008) J. Phys. Chem. B, 112, p. 8645. , - 8650Wang, X.Q., Yu, L., Jiao, J.J., Zhang, H.N., Wang, R., Chen, H., Aggregation Behavior of COOH-Functionalized Imidazolium-Based Surface Active Ionic Liquids in Aqueous Solution (2012) J. Mol. Liquid., 173, p. 103. , - 107Schrekker, H.S., Silva, D.O., Gelesky, M.A., Stracke, M.P., Schrekker, C.M.L., Goncalves, R.S., Dupont, J., Preparation, Cation-Anion Interactions and Physicochemical Properties of Ether-Functionalized Imidazolium Ionic Liquids (2008) J. Braz. Chem. Soc., 19, p. 426. , - 433Cho, C.W., Jungnickel, C., Stolte, S., Preiss, U., Arning, J., Ranke, J., Krossing, I., Thoming, J., Determination of LFER Descriptors of 30 Cations of Ionic Liquids Progress in Understanding Their Molecular Interaction Potentials (2012) ChemPhysChem, 13, p. 780. , - 787Twu, P., Zhao, Q.C., Pitner, W.R., Acree, W.E., Baker, G.A., Anderson, J.L., Evaluating the Solvation Properties of Functionalized Ionic Liquids with Varied Cation/Anion Composition Using the Solvation Parameter Model (2011) J. Chromatogr., Part A, 1218, p. 5311. , - 5318Luo, S.C., Sun, S.W., Deorukhkar, A.R., Lu, J.T., Bhattacharyya, A., Lin, I.J.B., Ionic Liquids and Ionic Liquid Crystals of Vinyl Functionalized Imidazolium Salts (2011) J. Mater. Chem., 21, p. 1866. , - 1873Liu, X.M., Song, Z.X., Wang, H.J., Density Functional Theory Study on the -SO3H Functionalized Acidic Ionic Liquids (2009) Struct. Chem., 20, p. 509. , - 515Gutowski, K.E., Maginn, E.J., Amine-Functionalized Task-Specific Ionic Liquids: A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with CO2 from Molecular Simulation (2008) J. Am. Chem. Soc., 130, p. 14690. , - 14704Yu, G.R., Zhang, S.J., Zhou, G.H., Liu, X.M., Chen, X.C., Structure, Interaction and Property of Amino-Functionalized Imidazolium ILs by Molecular Dynamics Simulation and Ab Initio Calculation (2007) AIChE J., 53, p. 3210. , - 3221Paul, A., Samanta, A., Solute Rotation and Solvation Dynamics in an Alcohol-Functionalized Room Temperature Ionic Liquid (2007) J. Phys. Chem. B, 111, p. 4724. , - 4731Zhang, Q.H., Li, Z.P., Zhang, J., Zhang, S.G., Zhu, L.Y., Yang, J., Zhang, X.P., Deng, Y.Q., Physicochemical Properties of Nitrile-Functionalized Ionic Liquids (2007) J. Phys. Chem. B, 111, p. 2864. , - 2872Saha, S., Hamaguchi, H.O., Effect of Water on the Molecular Structure and Arrangement of Nitrile-Functionalized Ionic Liquids (2006) J. Phys. Chem. B, 110, p. 2777. , - 2781Fei, Z.F., Zhao, D.B., Geldbach, T.J., Scopelliti, R., Dyson, P.J., Structure of Nitrile-Functionalized Alkyltrifluoroborate Salts (2005) Eur. J. Inorg. Chem., p. 860. , - 865Lee, K.M., Chang, H.C., Jiang, J.C., Lu, L.C., Hsiao, C.J., Lee, Y.T., Lin, S.H., Lin, I.J.B., Probing C-H···X Hydrogen Bonds in Amide-Functionalized Imidazolium Salts under High Pressure (2004) J. Chem. Phys., 120, p. 8645. , - 8650Stancik, C.M., Lavoie, A.R., Schutz, J., Achurra, P.A., Lindner, P., Gast, A.P., Waymouth, R.M., Micelles of Imidazolium-Functionalized Polystyrene Diblock Copolymers Investigated with Neutron and Light Scattering (2004) Langmuir, 20, p. 596. , - 605Allen, J.J., Schneider, Y., Kail, B.W., Luebke, D.R., Nulwala, H., Damodaran, K., Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid (2013) J. Phys. Chem. B, 117, p. 3877. , - 3883Katsyuba, S.A., Vener, M.V., Zvereva, E.E., Fei, Z.F., Scopelliti, R., Laurenczy, G., Yan, N., Dyson, P.J., How Strong Is Hydrogen Bonding in Ionic Liquids? Combined X-ray Crystallographic, Infrared/Raman Spectroscopic, and Density Functional Theory Study (2013) J. Phys. Chem. B, 117, p. 9094. , - 9105Zhao, W., Leroy, F., Heggen, B., Zahn, S., Kirchner, B., Balasubramanian, S., Muller-Plathe, F., Are There Stable Ion-Pairs in Room-Temperature Ionic Liquids? Molecular Dynamics Simulations of 1- n -Butyl-3-methylimidazolium Hexafluorophosphate (2009) J. Am. Chem. Soc., 131, p. 15825. , - 15833Wong, W.L., Wong, K.Y., Recent development in functionalized ionic liquids as reaction media and promoters (2012) Can. J. Chem., 90, p. 1. , - 16Zhao, H., Song, Z.Y., Olubajo, O., Cowins, J.V., New Ether-Functionalized Ionic Liquids for Lipase-Catalyzed Synthesis of Biodiesel (2010) Appl. Biochem. Biotechnol., 162, p. 13. , - 23Liu, Y., Wang, S.S., Liu, W., Wan, Q.X., Wu, H.H., Gao, G.H., Transition-Metal Catalyzed Carbon-Carbon Couplings Mediated with Functionalized Ionic Liquids, Supported-Ionic Liquid Phase, or Ionic Liquid Media (2009) Curr. Org. Chem., 13, p. 1322. , - 1346Luo, S.Z., Mi, X.L., Zhang, L., Liu, S., Xu, H., Cheng, J.P., Functionalized Ionic Liquids Catalyzed Direct Aldol Reactions (2007) Tetrahedron, 63, p. 1923. , - 1930Hernandez, J.G., Juaristi, E., Recent Efforts Directed to the Development of More Sustainable Asymmetric Organocatalysis (2012) Chem. Commun., 48, p. 5396. , - 5409Luo, S.Z., Zhang, L., Cheng, J.P., Functionalized Chiral Ionic Liquids: A New Type of Asymmetric Organocatalysts and Nonclassical Chiral Ligands (2009) Chem.-Asian J., 4, p. 1184. , - 1195Budagumpi, S., Haque, R.A., Salman, A.W., Stereochemical and Structural Characteristics of Single- and Double-Site Pd(II)-N-Heterocyclic Carbene Complexes: Promising Catalysts in Organic Syntheses Ranging from C-C Coupling to Olefin Polymerizations (2012) Coord. Chem. Rev., 256, p. 1787. , - 1830Gu, Y.L., Li, G.X., Ionic Liquids-Based Catalysis with Solids: State of the Art (2009) Adv. Synth. Catal., 351, p. 817. , - 847Bugaut, X., Glorius, F., Organocatalytic Umpolung: N-Heterocyclic Carbenes and beyond (2012) Chem. Soc. Rev., 41, p. 3511. , - 3522Lee, J.W., Shin, J.Y., Chun, Y.S., Bin Jang, H., Song, C.E., Lee, S.G., Toward Understanding the Origin of Positive Effects of Ionic Liquids on Catalysis: Formation of More Reactive Catalysts and Stabilization of Reactive Intermediates and Transition States in Ionic Liquids (2010) Acc. Chem. Res., 43, p. 985. , - 994Yang, Z., Hofmeister Effects: An Explanation for the Impact of Ionic Liquids on Biocatalysis (2009) J. Biotechnol., 144, p. 12. , - 22Dos Santos, M.R., Diniz, J.R., Arouca, A.M., Gomes, A.F., Gozzo, F.C., Tamborim, S.M., Parize, A.L., Neto, B.A.D., Ionically Tagged Iron Complex-Catalyzed Epoxidation of Olefins in Imidazolium-Based Ionic Liquids (2012) ChemSusChem, 5, p. 716. , - 726Peppel, T., Roth, C., Fumino, K., Paschek, D., Kockerling, M., Ludwig, R., The Influence of Hydrogen-Bond Defects on the Properties of Ionic Liquids (2011) Angew. Chem., Int. Ed., 50, p. 6661. , - 6665Fumino, K., Reichert, E., Wittler, K., Hempelmann, R., Ludwig, R., Low-Frequency Vibrational Modes of Protic Molten Salts and Ionic Liquids: Detecting and Quantifying Hydrogen Bonds (2012) Angew. Chem., Int. Ed., 51, pp. 6236-6240Dong, K., Zhang, S.J., Hydrogen Bonds: A Structural Insight into Ionic Liquids (2012) Chem.-Eur. J., 18, pp. 2748-2761Tsuzuki, S., Tokuda, H., Mikami, M., Theoretical analysis of the hydrogen bond of imidazolium C-2-H with anions (2007) Phys. Chem. Chem. Phys., 9, pp. 4780-4784Lassegues, J.C., Grondin, J., Cavagnat, D., Johansson, P., New Interpretation of the CH Stretching Vibrations in Imidazolium-Based Ionic Liquids (2009) J. Phys. Chem. A, 113, pp. 6419-6421Danten, Y., Cabaco, M.I., Besnard, M., Interaction of Water Highly Diluted in 1-Alkyl-3-methyl Imidazolium Ionic Liquids with the PF6- and BF4- Anions (2009) J. Phys. Chem. A, 113, pp. 2873-2889Fei, Z.F., Zhao, D.B., Geldbach, T.J., Scopelliti, R., Dyson, P.J., Bronsted Acidic Ionic Liquids and Their Zwitterions: Synthesis, Characterization and p K (a) Determination (2004) Chem.-Eur. J., 10, pp. 4886-4893Lissner, E., De Souza, W.F., Ferrera, B., Dupont, J., Oxidative Desulfurization of Fuels with Task-Specific Ionic Liquids (2009) ChemSusChem, 2, pp. 962-964Zhang, H., Cui, H., Synthesis and Characterization of Functionalized Ionic Liquid-Stabilized Metal (Gold and Platinum) Nanoparticles and Metal Nanoparticle/Carbon Nanotube Hybrids (2009) Langmuir, 25, pp. 2604-2612Li, J.Z., Peng, Y.Q., Song, G.H., Mannich Reaction Catalyzed by Carboxyl-Functionalized Ionic Liquid in Aqueous Media (2005) Catal. Lett., 102, pp. 159-162Oliveira, F.F.D., Dos Santos, M.R., Lalli, P.M., Schmidt, E.M., Bakuzis, P., Lapis, A.A.M., Monteiro, A.L., Neto, B.A.D., Charge-Tagged Acetate Ligands As Mass Spectrometry Probes for Metal Complexes Investigations: Applications in Suzuki and Heck Phosphine-Free Reactions (2011) J. Org. Chem., 76, pp. 10140-10147Lalli, P.M., Rodrigues, T.S., Arouca, A.M., Eberlin, M.N., Neto, B.A.D., N -heterocyclic carbenes with negative-charge tags: Direct sampling from ionic liquid solutions (2012) RSC Adv., 2, pp. 3201-3203Ramos, L.M., Guido, B.C., Nobrega, C.C., Corrêa, J.R., Silva, R.G., De Oliveira, H.C.B., Gomes, A.F., Neto, B.A.D., The Biginelli Reaction with an Imidazolium-Tagged Recyclable Iron Catalyst: Kinetics, Mechanism, and Antitumoral Activity (2013) Chem.-Eur. J., 19, pp. 4156-4168Diniz, J.R., Correa, J.R., Moreira D. D, A., Fontenele, R.S., De Oliveira, A.L., Abdelnur, P.V., Dutra, J.D.L., Neto, B.A.D., Water-Soluble Tb3+ and Eu3+ Complexes with Ionophilic (Ionically Tagged) Ligands as Fluorescence Imaging Probes (2013) Inorg. Chem., 52, pp. 10199-10205Medeiros, G.A., Da Silva, W.A., Bataglion, G.A., Ferreira, D.A.C., De Oliveira, H.C.B., Eberlin, M.N., Neto, B.A.D., Probing the Mechanism of the Ugi Four-Component Reaction with Charge-Tagged Reagents by ESI-MS(/MS) (2014) Chem. Commun., 50, pp. 338-340Ramos, L.M., Tobio, A., Dos Santos, M.R., De Oliveira, H.C.B., Gomes, A.F., Gozzo, F.C., De Oliveira, A.L., Neto, B.A.D., Mechanistic Studies on Lewis Acid Catalyzed Biginelli Reactions in Ionic Liquids: Evidence for the Reactive Intermediates and the Role of the Reagents (2012) J. Org. Chem., 77, pp. 10184-10193Medeiros, A., Parize, A.L., Oliveira, V.M., Neto, B.A.D., Bakuzis, A.F., Sousa, M.H., Rossi, L.M., Rubim, J.C., Magnetic Ionic Liquids Produced by the Dispersion of Magnetic Nanoparticles in 1- n -Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl) imide (BMI.NTf2) (2012) ACS Appl. Mater. Interfaces, 4, pp. 5458-5465Neto, B.A.D., Meurer, E.C., Galaverna, R., Bythell, B.J., Dupont, J., Cooks, R.G., Eberlin, M.N., Vapors from Ionic Liquids: Reconciling Simulations with Mass Spectrometric Data (2012) J. Phys. Chem. Lett., 3, pp. 3435-3441Dos Santos, M.R., Gomes, A.F., Gozzo, F.C., Suarez, P.A.Z., Neto, B.A.D., Iron Complex with Ionic Tag-Catalyzed Olefin Reduction under Oxidative Conditions-A Different Reaction for Iron (2012) ChemSusChem, 5, pp. 2383-2389Dubey, R., Lim, D., Weak Interactions: A Versatile Role in Aromatic Compounds (2011) Curr. Org. Chem., 15, pp. 2072-2081Dupont, J., Suarez, P.A.Z., De Souza, R.F., Burrow, R.A., Kintzinger, J.P., C-H-π Interactions in 1- n -Butyl-3-methylimidazolium Tetraphenylborate Molten Salt: Solid and Solution Structures (2000) Chem.-Eur. J., 6, pp. 2377-2381Consorti, C.S., Suarez, P.A.Z., De Souza, R.F., Burrow, R.A., Farrar, D.H., Lough, A.J., Loh, W., Dupont, J., Identification of 1,3-Dialkylimidazolium Salt Supramolecular Aggregates in Solution (2005) J. Phys. Chem. B, 109, pp. 4341-4349Dong, K., Zhang, S.J., Wang, D.X., Yao, X.Q., Hydrogen Bonds in Imidazolium Ionic Liquids (2006) J. Phys. Chem. A, 110, pp. 9775-9782Steiner, T., The Hydrogen Bond in the Solid State (2002) Angew. Chem., Int. Ed., 41, pp. 48-76Vold, R.L., Waugh, J.S., Klein, M.P., Phelps, D.E., Measurement of Spin Relaxation in Complex Systems (1968) J. Chem. Phys., 48, pp. 3831-3832Desando, M.A., Lahajnar, G., Sepe, A., Proton Magnetic Relaxation and the Aggregation of n -Octylammonium n -Octadecanoate Surfactant in Deuterochloroform Solution (2010) J. Colloid Interface Sci., 345, pp. 338-345Zhao, Y., Gao, S.J., Wang, J.J., Tang, J.M., Aggregation of Ionic Liquids C(n)mim Br (n = 4, 6, 8, 10, 12) in D2O: A NMR Study (2008) J. Phys. Chem. B, 112, pp. 2031-2039Remsing, R.C., Liu, Z.W., Sergeyev, I., Moyna, G., Solvation and Aggregation of N, N'-Dialkylimidazolium Ionic Liquids: A Multinuclear NMR Spectroscopy and Molecular Dynamics Simulation Study (2008) J. Phys. Chem. B, 112, pp. 7363-7369Martins, C.T., Sato, B.M., El Seoud, O.A., First Study on the Thermo-Solvatochromism in Aqueous 1-(1-Butyl)-3- methylimidazolium Tetrafluoroborate: A Comparison between the Solvation by an Ionic Liquid and by Aqueous Alcohols (2008) J. Phys. Chem. B, 112, pp. 8330-8339Ananikov, V.P., Characterization of Molecular Systems and Monitoring of Chemical Reactions in Ionic Liquids by Nuclear Magnetic Resonance Spectroscopy (2011) Chem. Rev., 111, pp. 418-454Spickermann, C., Thar, J., Lehmann, S.B.C., Zahn, S., Hunger, J., Buchner, R., Hunt, P.A., Kirchner, B., Why Are Ionic Liquid Ions Mainly Associated in Water? A Car-Parrinello Study of 1-Ethyl-3-methyl-imidazolium Chloride Water Mixture (2008) J. Chem. Phys., 129, p. 104505Singh, T., Kumar, A., Cation-anion-water interactions in aqueous mixtures of imidazolium based ionic liquids (2011) Vib. Spectrosc., 55, pp. 119-125Bowers, J., Butts, C.P., Martin, P.J., Vergara-Gutierrez, M.C., Heenan, R.K., Aggregation Behavior of Aqueous Solutions of Ionic Liquids (2004) Langmuir, 20, pp. 2191-2198Singh, T., Kumar, A., Aggregation Behavior of Ionic Liquids in Aqueous Solutions: Effect of Alkyl Chain Length, Cations, and Anions (2007) J. Phys. Chem. B, 111, pp. 7843-7851Zhang, H.C., Liang, H.J., Wang, J.J., Li, K., Aggregation Behavior of Imidazolium-Based Ionic Liquids in Water (2007) Z. Phys. Chem., 221, pp. 1061-1074Neumann, B., On the Aggregation Behavior of Pseudoisocyanine Chloride in Aqueous Solution As Probed by UV/vis Spectroscopy and Static Light Scattering (2001) J. Phys. Chem. B, 105, pp. 8268-8274Vila, J., Gines, P., Rilo, E., Cabeza, O., Varela, L.M., Great Increase of the Electrical Conductivity of Ionic Liquids in Aqueous Solutions (2006) Fluid Phase Equilib., 247, pp. 32-39Wang, Y.D., Cakmak, M., Spatial Variation of Structural Hierarchy in Injection Molded PVDF and Blends of PVDF with PMMA. Part II. Application of Microbeam WAXS Pole Figure and SAXS Techniques (2001) Polymer, 42, pp. 4233-4251Korgel, B.A., Fitzmaurice, D., Small-Angle X-Ray-Scattering Study of Silver-Nanocrystal Disorder-Order Phase Transitions (1999) Phys. Rev. B, 59, pp. 14191-14201Verma, R., Marand, H., Hsiao, B., Morphological Changes during Secondary Crystallization and Subsequent Melting in Poly(Ether Ether Ketone) as Studied by Real Time Small Angle X-Ray Scattering (1996) Macromolecules, 29, pp. 7767-7775Ficke, L.E., Brennecke, J.F., Interactions of Ionic Liquids and Water (2010) J. Phys. Chem. B, 114, pp. 10496-10501Lopes, J.N.C., Gomes, M.F.C., Padua, A.A.H., Nonpolar, Polar, and Associating Solutes in Ionic Liquids (2006) J. Phys. Chem. B, 110, pp. 16816-16818Schatzbe, P., On Molecular Diameter of Water from Solubility and Diffusion Measurements (1967) J. Phys. Chem., 71, pp. 4569-4570Perera, A., Sokolic, F., Zoranic, L., Microstructure of Neat Alcohols (2007) Phys. Rev. e, 75, p. 060502Kemp, D.D., Gordon, M.S., Theoretical Study of the Solvation of Fluorine and Chlorine Anions by Water (2005) J. Phys. Chem. A, 109, pp. 7688-7699Dupont, J., Eberlin, M.N., Structure and Physico-Chemical Properties of Ionic Liquids: What Mass Spectrometry is Telling Us (2013) Curr. Org. Chem., 17, pp. 257-272Alvim, H.G.O., De Lima, T.B., De Oliveira, H.C.B., Gozzo, F.C., De Macedo, J.L., Abdelnur, P.V., Silva, W.A., Neto, B.A.D., Ionic Liquid Effect over the Biginelli Reaction under Homogeneous and Heterogeneous Catalysis (2013) ACS Catal., 3, pp. 1420-1430Alvim, H.G.O., Lima, T.B., De Oliveira, A.L., De Oliveira, H.C.B., Silva, F.M., Gozzo, F.C., Souza, R.Y., Neto, B.A.D., Facts, Presumptions, and Myths on the Solvent-Free and Catalyst-Free Biginelli Reaction. What is Catalysis for? (2014) J. Org. Chem., 79, pp. 3383-3397Alvim, H.G.O., Bataglion, G.A., Ramos, L.M., De Oliveira, A.L., De Oliveira, H.C.B., Eberlin, M.N., De Macedo, J.L., Neto, B.A.D., Task-Specific Ionic Liquid Incorporating Anionic Heteropolyacid-Catalyzed Hantzsch and Mannich Multicomponent Reactions. Ionic Liquid Effect Probed by ESI-MS(/MS) (2014) Tetrahedron, 70, pp. 3306-3313Kitaura, K., Sakaki, S., Morokuma, K., Bonding in Ni(PH3)2(C2H4) and Ni(PH3)2(C2H2). Ab Initio SCF-MO Study (1981) Inorg. Chem., 20, pp. 2292-2297Bader, R.F.W., Popelier, P.L.A., Keith, T.A., Theoretical Definition of a Functional-Group and the Molecular-Orbital Paradigm (1994) Angew. Chem., Int. Ed., 33, pp. 620-631Bone, R.G.A., Bader, R.F.W., Identifying and Analyzing Intermolecular Bonding Interactions in Van der Waals Molecules (1996) J. Phys. Chem., 100, pp. 10892-10911Hernandez-Trujillo, J., Bader, R.F.W., Properties of
Alternative Approach to Calculate Two-Center Overlap Matrix through Deformed Exponential Function
In
this work, we propose an alternative approach to evaluate two-center
overlap integrals. It is computationally more efficient than the standard
procedure and is based on the deformed exponential function. In the
new procedure, the CPU time to calculate each element of the overlap
matrix (<i>S</i><sub>μ,ν</sub>) is constant
and independent of the number of Gaussian primitives (<i>N</i><sub>G</sub>), whereas in the usual procedure this time increases,
formally, with <i>N</i><sub>G</sub><sup>2</sup>. To evaluate the accuracy of the proposed
methodology, we computed different molecular properties such as dipole
moments, hardness values, atomic charges, multicenter bond indices,
group indices, and some thermodynamic properties. In this work, all
calculations were performed using a minimal STO-6G basis set and WTBS
and the double-ζ Pople split-valence 6-31G basis set on the
Hartree–Fock (HF) and post-HF approximations. The integrals
were parametrized for the atoms of the first two rows of the periodic
table. All calculations were performed in the general ab initio quantum
chemistry package GAMESS, where the integrals were implemented
Harnessing Greenhouse Gases Absorption by Doped Fullerenes with Externally Oriented Electric Field
In this work, a theoretical investigation of the effects caused by the doping of C20 with silicon (Si) atom as well as the adsorption of CO, CO2 and N2 gases to C20 and C19Si fullerenes was carried out. In concordance with previous studies, it was found that the choice of the doping site can control the structural, electronic, and energetic characteristics of the C19Si system. The ability of C20 and C19Si to adsorb CO, CO2 and N2 gas molecules was evaluated. In order to modulate the process of adsorption of these chemical species to C19Si, an externally oriented electric field was included in the theoretical calculations. It was observed that C19Si is highly selective with respect to CO adsorption. Upon the increase of the electric field intensity the adsorption energy was magnified correspondingly and that the interaction between CO and C19Si changes in nature from a physical adsorption to a partial covalent character interaction
Bond Ellipticity Alternation: An Accurate Descriptor of the Nonlinear Optical Properties of π‑Conjugated Chromophores
Well-defined
structure–property relationships offer a conceptual
basis to afford a priori design principles to develop novel π-conjugated
molecular and polymer materials for nonlinear optical (NLO) applications.
Here, we introduce the bond ellipticity alternation (BEA) as a robust
parameter to assess the NLO characteristics of organic chromophores
and illustrate its effectiveness in the case of streptocyanines. BEA
is based on the symmetry of the electron density, a physical observable
that can be determined from experimental X-ray electron densities
or from quantum-chemical calculations. Through comparisons to the
well-established bond-length alternation and π-bond order alternation
parameters, we demonstrate the generality of BEA to foreshadow NLO
characteristics and underline that, in the case of large electric
fields, BEA is a more reliable descriptor. Hence, this study introduces
BEA as a prominent descriptor of organic chromophores of interest
for NLO applications
Probing the mechanism of the ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS)
The mechanism of the Ugi four-component reaction has been investigated by electrospray ionization (tandem) mass spectrometry using charge-tagged reagents (a carboxylic acid or an amine) to favour detection. Key intermediates were transferred directly via ESI(+) from the reaction solution to the gas phase and characterized by MS measurements and MS/MS collision induced dissociation. The Mumm rearrangement (final step) was also investigated by both travelling wave ion mobility mass spectrometry and DFT calculations. The data seem to consolidate the amazingly selective mechanism of this intricate four-component reaction. © 2013 The Royal Society of Chemistry.The mechanism of the Ugi four-component reaction has been investigated by electrospray ionization (tandem) mass spectrometry using charge-tagged reagents (a carboxylic acid or an amine) to favour detection. Key intermediates were transferred directly via503338340FAPDF - FUNDAÇÃO DE APOIO À PESQUISA NO DISTRITO FEDERALCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TEsem informaçãosem informaçãosem informaçãosem informaçãoDe Graaff, C., Ruijter, E., Orru, R.V.A., (2012) Chem. Soc. Rev., 41, pp. 3969-4009Hernandez, J.G., Juaristi, E., (2012) Chem. Commun., 48, pp. 5396-5409Domling, A., Wang, W., Wang, K., (2012) Chem. Rev., 112, pp. 3083-3135Van Berkel, S.S., Bogels, B.G.M., Wijdeven, M.A., Westermann, B., Rutjes, F., (2012) Eur. J. Org. Chem., pp. 3543-3559Vercillo, O.E., Andrade, C.K.Z., Wessjohann, L.A., (2008) Org. Lett., 10, pp. 205-208Basso, A., Banfi, L., Riva, R., (2010) Eur. J. Org. Chem., pp. 1831-1841Domling, A., (2006) Chem. Rev., 106, pp. 17-89Ugi, I., (1959) Angew. Chem., Int. Ed., 71, p. 386Cheron, N., Ramozzi, R., El Kaim, L., Grimaud, L., Fleurat-Lessard, P., (2012) J. Org. Chem., 77, pp. 1361-1366Coelho, F., Eberlin, M.N., (2011) Angew. Chem., Int. Ed., 50, pp. 5261-5263Li, R.M., Smith, R.L., Kenttamaa, H.I., (1996) J. Am. Chem. Soc., 118, pp. 5056-5061Dos Santos, M.R., Diniz, J.R., Arouca, A.M., Gomes, A.F., Gozzo, F.C., Tamborim, S.M., Parize, A.L., Neto, B.A.D., (2012) ChemSusChem, 5, pp. 716-726Oliveira, F.F.D., Dos Santos, M.R., Lalli, P.M., Schmidt, E.M., Bakuzis, P., Lapis, A.A.M., Monteiro, A.L., Neto, B.A.D., (2011) J. Org. Chem., 76, pp. 10140-10147Alvim, H.G.O., De Lima, T.B., De Oliveira, H.C.B., Gozzo, F.C., De MacEdo, J.L., Abdelnur, P.V., Silva, W.A., Neto, B.A.D., (2013) ACS Catal., 3, pp. 1420-1430Vikse, K.L., Henderson, M.A., Oliver, A.G., McIndoe, J.S., (2010) Chem. Commun., 46, pp. 7412-7414Limberger, J., Leal, B.C., Back, D.F., Dupont, J., Monteiro, A.L., (2012) Adv. Synth. Catal., 354, pp. 1429-1436Vikse, K.L., Ahmadi, Z., Manning, C.C., Harrington, D.A., McIndoe, J.S., (2011) Angew. Chem., Int. Ed., 50, pp. 8304-8306Gozzo, F.C., Santos, L.S., Augusti, R., Consorti, C.S., Dupont, J., Eberlin, M.N., (2004) Chem.-Eur. J., 10, pp. 6187-6193Lapthorn, C., Pullen, F., Chowdhry, B.Z., (2013) Mass Spectrom. Rev., 32, pp. 43-71Lalli, P.M., Corilo, Y.E., De Sa, G.F., Daroda, R.J., De Souza, V., Souza, G., Campuzano, I., Eberlin, M.N., (2011) ChemPhysChem, 12, pp. 1444-144
Stereodynamical Origin of Anti-Arrhenius Kinetics: Negative Activation Energy and Roaming for a Four-Atom Reaction
The OH + HBr → H<sub>2</sub>O + Br reaction, prototypical
of halogen-atom liberating processes relevant to mechanisms for atmospheric
ozone destruction, attracted frequent attention of experimental chemical
kinetics: the nature of the unusual reactivity drop from low to high
temperatures eluded a variety of theoretical efforts, ranking this
one among the most studied four-atom reactions. Here, inspired by
oriented molecular-beams experiments, we develop a first-principles
stereodynamical approach. Thermalized sets of trajectories, evolving
on a multidimensional potential energy surface quantum mechanically
generated on-the-fly, provide a map of most visited regions at each
temperature. Visualizations of rearrangements of bonds along trajectories
and of the role of specific angles of reactants’ mutual approach
elucidate the mechanistic change from the low kinetic energy regime
(where incident reactants reorient to find the propitious alignment
leading to reaction) to high temperature (where speed hinders adjustment
of directionality and roaming delays reactivity)
Solid, Solution and Gas Phase Interactions of an Imidazolium-Based Task-Specific Ionic Liquid Derived from Natural Kojic Acid
An imidazolium-based task-specific ionic liquid derived from the natural kojic acid had its supramolecular interactions investigated in solid, solution and gas phase. The use of a set of techniques formed by single-crystal X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, UV-Vis spectrophotometry, conductivity measurements, small angle X-ray scattering (SAXS), electrospray (tandem) mass spectrometry (ESI-MS(/MS)), and theoretical calculations allowed a deep investigation of the structural organization of the task-specific ionic liquid and its supramolecular interactions.251222802294Fei, Z., Dyson, P.J., (2013) Chem. Commun., 49, p. 2594Dupont, J., (2011) Acc. Chem. Res., 44, p. 1223Dupont, J., Scholten, J.D., (2010) Chem. Soc. Rev., 39, p. 1780Plechkova, N.V., Seddon, K.R., (2008) Chem. Soc. Rev., 37, p. 123Hallett, J.P., Welton, T., (2011) Chem. Rev., 111, p. 3508Scholten, J.D., Leal, B.C., Dupont, J., (2012) ACS Catal., 2, p. 184Dupont, J., Meneghetti, M.R., (2013) Curr. Opin. Colloid Interface Sci., 18, p. 54Dupont, J., Eberlin, M.N., (2013) Curr. Org. Chem., 17, p. 257Petkovic, M., Seddon, K.R., Rebelo, L.P.N., Pereira, C.S., (2011) Chem. Soc. Rev., 40, p. 1383Suarez, P.A.Z., Ramalho, H.F., (2013) Curr. Org. Chem., 17, p. 229Olivier-Bourbigou, H., Magna, L., Morvan, D., (2010) Appl. Catal., A, 373, p. 1Dong, K., Zhang, S.J., (2012) Chem. Eur. J., 18, p. 2748Van Rantwijk, F., Sheldon, R.A., (2007) Chem. Rev., 107, p. 2757Parvulescu, V.I., Hardacre, C., (2007) Chem. Rev., 107, p. 2615Tang, S.K., Baker, G.A., Zhao, H., (2012) Chem. Soc. Rev., 41, p. 4030Freire, M.G., Claudio, A.F.M., Araujo, J.M.M., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C., Rebelo, L.P.N., (2012) Chem. Soc. Rev., 41, p. 4966Niedermeyer, H., Hallett, J.P., Villar-Garcia, I.J., Hunt, P.A., Welton, T., (2012) Chem. Soc. Rev., 41, p. 7780Riduan, S.N., Zhang, Y.G., (2013) Chem. Soc. Rev., 42, p. 9055Bica, K., Gaertner, P., (2008) Eur. J. Org. Chem., p. 3235Prechtl, M.H.G., Scholten, J.D., Neto, B.A.D., Dupont, J., (2009) Curr. Org. Chem., 13, p. 1259Sharma, R., Mahajan, R.K., (2014) RSC Adv., 4, p. 748Weingartner, H., Cabrele, C., Herrmann, C., (2012) Phys. Chem. Chem. Phys., 14, p. 415Ueno, K., Tokuda, H., Watanabe, M., (2010) Phys. Chem. Chem. Phys., 12, p. 1649Fumino, K., Reichert, E., Wittler, K., Hempelmann, R., Ludwig, R., (2012) Angew. Chem., Int. Ed., 51, p. 6236Tsuzuki, S., Tokuda, H., Mikami, M., (2007) Phys. Chem. Chem. Phys., 9, p. 4780Peppel, T., Roth, C., Fumino, K., Paschek, D., Kockerling, M., Ludwig, R., (2011) Angew. Chem., Int. Ed., 50, p. 6661Lassegues, J.C., Grondin, J., Cavagnat, D., Johansson, P., (2009) J. Phys. Chem. A, 113, p. 6419Danten, Y., Cabaco, M.I., Besnard, M., (2009) J. Phys. Chem. A, 113, p. 2873Zhao, W., Leroy, F., Heggen, B., Zahn, S., Kirchner, B., Balasubramanian, S., Muller-Plathe, F., (2009) J. Am. Chem. Soc., 131, p. 15825Wang, X.Q., Yu, L., Jiao, J.J., Zhang, H.N., Wang, R., Chen, H., (2012) J. Mol. Liq., 173, p. 103Schrekker, H.S., Silva, D.O., Gelesky, M.A., Stracke, M.P., Schrekker, C.M.L., Gonc¸alves, R.S., Dupont, J., (2008) J. Braz.Chem. Soc., 19, p. 426Cho, C.W., Jungnickel, C., Stolte, S., Preiss, U., Arning, J., Ranke, J., Krossing, I., Thoming, J., (2012) ChemPhysChem, 13, p. 780Twu, P., Zhao, Q.C., Pitner, W.R., Acree, W.E., Baker, G.A., Anderson, J.L., (2011) J. Chromatogr. A, 1218, p. 5311Luo, S.C., Sun, S.W., Deorukhkar, A.R., Lu, J.T., Bhattacharyya, A., Lin, I.J.B., (2011) J. Mater. Chem., 21, p. 1866Liu, X.M., Song, Z.X., Wang, H.J., (2009) Struct. Chem., 20, p. 509Gutowski, K.E., Maginn, E.J., (2008) J. Am. Chem. Soc., 130, p. 14690Yu, G.R., Zhang, S.J., Zhou, G.H., Liu, X.M., Chen, X.C., (2007) AIChE J., 53, p. 3210Paul, A., Samanta, A., (2007) J. Phys. Chem. B, 111, p. 4724Zhang, Q.H., Li, Z.P., Zhang, J., Zhang, S.G., Zhu, L.Y., Yang, J., Zhang, X.P., Deng, Y.Q., (2007) J. Phys. Chem. B, 111, p. 2864Saha, S., Hamaguchi, H.O., (2006) J. Phys. Chem. B, 110, p. 2777Fei, Z.F., Zhao, D.B., Geldbach, T.J., Scopelliti, R., Dyson, P.J., (2005) Eur. J. Inorg. Chem., 860Lee, K.M., Chang, H.C., Jiang, J.C., Lu, L.C., Hsiao, C.J., Lee, Y.T., Lin, S.H., Lin, I.J.B., (2004) J. Chem. Phys., 120, p. 8645Stancik, C.M., Lavoie, A.R., Schutz, J., Achurra, P.A., Lindner, P., Gast, A.P., Waymouth, R.M., (2004) Langmuir, 20, p. 596Allen, J.J., Schneider, Y., Kail, B.W., Luebke, D.R., Nulwala, H., Damodaran, K., (2013) J. Phys. Chem. B, 117, p. 3877Katsyuba, S.A., Vener, M.V., Zvereva, E.E., Fei, Z.F., Scopelliti, R., Laurenczy, G., Yan, N., Dyson, P.J., (2013) J. Phys. Chem. B, 117, p. 9094Lee, S.G., (2006) Chem. Commun., p. 1049Lombardo, M., Trombini, C., (2010) ChemCatChem, 2, p. 135Sebesta, R., Kmentova, I., Toma, S., (2008) Green Chem., 10, p. 484Zhang, H., Cui, H., (2009) Langmuir, 25, p. 2604Lissner, E., De Souza, W.F., Ferrera, B., Dupont, J., (2009) ChemSusChem, 2, p. 962Li, J.Z., Peng, Y.Q., Song, G.H., (2005) Catal. Lett., 102, p. 159Dong, F., Jun, L., Xinli, Z., Zhiwen, Y., Zuliang, L., (2007) J. Mol. Catal. A: Chem., 274, p. 208Safari, J., Zarnegar, Z., (2014) New J. Chem., 38, p. 358Sharma, N., Sharma, U.K., Kumar, R., Richa, Sinha, A.K., (2012) RSC Adv., 2, p. 10648Wang, L., Li, H.J., Li, P.H., (2009) Tetrahedron, 65, p. 364Siyutkin, D.E., Kucherenko, A.S., Struchkova, M.I., Zlotin, S.G., (2008) Tetrahedron Lett., 49, p. 1212Anjaiah, S., Chandrasekhar, S., Gree, R., (2004) Tetrahedron Lett., 45, p. 569Geldbach, T.J., Dyson, P.J., (2004) J. Am. Chem. Soc., 126, p. 8114Zhu, A.L., Jiang, T., Han, B.X., Huang, J., Zhang, J.C., Ma, X.M., (2006) New J. Chem., 30, p. 736Ramos, L.M., Guido, B.C., Nobrega, C.C., Corrêa, J.R., Silva, R.G., De Oliveira, H.C.B., Gomes, A.F., Neto, B.A.D., (2013) Chem. Eur. J., 19, p. 4156Alvim, H.G.O., De Lima, T.B., De Oliveira, H.C.B., Gozzo, F.C., De Macedo, J.L., Abdelnur, P.V., Silva, W.A., Neto, B.A.D., (2013) ACS Catal., 3, p. 1420Alvim, H.G.O., Bataglion, G.A., Ramos, L.M., De Oliveira, A.L., De Oliveira, H.C.B., Eberlin, M.N., De Macedo, J.L., Neto, B.A.D., (2014) Tetrahedron, 70, p. 3306Oliveira, F.F.D., Dos Santos, M.R., Lalli, P.M., Schmidt, E.M., Bakuzis, P., Lapis, A.A.M., Monteiro, A.L., Neto, B.A.D., (2011) J. Org. Chem., 76, p. 10140Medeiros, G.A., Da Silva, W.A., Bataglion, G.A., Ferreira, D.A.C., De Oliveira, H.C.B., Eberlin, M.N., Neto, B.A.D., (2014) Chem. Commun., 50, p. 338Rodrigues, T.S., Silva, V.H.C., Lalli, P.M., De Oliveira, H.C.B., Da Silva, W.A., Coelho, F., Eberlin, M.N., Neto, B.A.D., (2014) J. Org. Chem., 79, p. 5239Alvim, H.G.O., Lima, T.B., De Oliveira, A.L., De Oliveira, H.C.B., Silva, F.M., Gozzo, F.C., Souza, R.Y., Neto, B.A.D., (2014) J. Org. Chem., 79, p. 3383Diniz, J.R., Correa, J.R., Moreira, D.D., Fontenele, R.S., De Oliveira, A.L., Abdelnur, P.V., Dutra, J.D.L., Neto, B.A.D., (2013) Inorg. Chem., 52, p. 10199Dos Santos, M.R., Diniz, J.R., Arouca, A.M., Gomes, A.F., Gozzo, F.C., Tamborim, S.M., Parize, A.L., Neto, B.A.D., (2012) ChemSusChem, 5, p. 716Dos Santos, M.R., Gomes, A.F., Gozzo, F.C., Suarez, P.A.Z., Neto, B.A.D., (2012) ChemSusChem, 5, p. 2383Dos Santos, M.R., Coriolano, R., Godoi, M.N., Monteiro, A.L., De Oliveira, H.C.B., Eberlin, M.N., Neto, B.A.D., (2014) New J. Chem., 38, p. 2958Mota, A.A.R., Gatto, C.C., Machado, G., De Oliveira, H.C.B., Fasciotti, M., Bianchi, O., Eberlin, M.N., Neto, B.A.D., (2014) J. Phys. Chem. C, 118, p. 17878Dupont, J., Suarez, P.A.Z., De Souza, R.F., Burrow, R.A., Kintzinger, J.P., (2000) Chem. Eur. J., 6, p. 2377Consorti, C.S., Suarez, P.A.Z., De Souza, R.F., Burrow, R.A., Farrar, D.H., Lough, A.J., Loh, W., Dupont, J., (2005) J. Phys. Chem. B, 109, p. 4341Steiner, T., (2002) Angew. Chem., Int. Ed., 41, p. 48Corvo, M.C., Sardinha, J., Menezes, S.C., Einloft, S., Seferin, M., Dupont, J., Casimiro, T., Cabrita, E.J., (2013) Angew. Chem., Int. Ed., 52, p. 13024Otrelo-Cardoso, A.R., Schwuchow, V., Rodrigues, D., Cabrita, E.J., Leimkuehler, S., Romao, M.J., Santos-Silva, T., (2014) PLoS One, 9, p. e87295Figueiredo, A.M., Sardinha, J., Moore, G.R., Cabrita, E.J., (2013) Phys. Chem. Chem. Phys., 15, p. 19632Casimiro, M.H., Corvo, M.C., Ramos, A.M., Cabrita, E.J., Ramos, A.M., Ferreira, L.M., (2013) Mater. Chem. Phys., 138, p. 11Vold, R.L., Waught, J.S., Klein, M.P., Phelps, D.E., (1968) Chem. Phys., 48, p. 3831Desando, M.A., Lahajnar, G., Sepe, A., (2010) J. Colloid Interface Sci., 345, p. 338Spickermann, C., Thar, J., Lehmann, S.B.C., Zahn, S., Hunger, J., Buchner, R., Hunt, P.A., Kirchner, B., (2008) J. Chem. Phys., 129, p. 104505Vila, J., Gines, P., Rilo, E., Cabeza, O., Varela, L.M., (2006) Fluid Phase Equilib., 247, p. 32Bowers, J., Butts, C.P., Martin, P.J., Vergara-Gutierrez, M.C., Heenan, R.K., (2004) Langmuir, 20, p. 2191Zhang, H.C., Liang, H.J., Wang, J.J., Li, K., (2007) Z. Phys. Chem., 221, p. 1061Neumann, B., (2001) J. Phys. Chem. B, 105, p. 8268Wang, Y.D., Cakmak, M., (2001) Polymer, 42, p. 4233Korgel, B.A., Fitzmaurice, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, p. 14191Verma, R., Marand, H., Hsiao, B., (1996) Macromolecules, 29, p. 7767Schatzbe, P., (1967) J. Phys. Chem., 71, p. 4569Perera, A., Sokolic, F., Zoranic, L., (2007) Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 75, p. 060502Barhdadi, R., Troupel, M., Comminges, C., Laurent, M., Doherty, A., (2011) J. Phys. Chem. B, 116, p. 277Coelho, F., Eberlin, M.N., (2011) Angew. Chem., Int. Ed., 50, p. 5261Bader, R.F.W., (1991) Chem. Rev., 91, p. 893Bader, R.F.W., Popelier, P.L.A., Keith, T.A., (1994) Angew. Chem., Int. Ed., 33, p. 620Bone, R.G.A., Bader, R.F.W., (1996) J. Phys. Chem., 100, p. 10892Hernandez-Trujillo, J., Bader, R.F.W., (2000) J. Phys. Chem. A, 104, p. 1779Bader, R.F.W., (1998) J. Phys. Chem. A, 102, p. 7314Popelier, P.L.A., (1999) J. Phys. Chem. A, 103, p. 2883O'Brien, S.E., Popelier, P.L.A., (1999) Can. J. Chem., 77, p. 28Popelier, P.L.A., (1998) J. Phys. Chem. A, 102, p. 1873Koch, U., Popelier, P.L.A., (1995) J. Phys. Chem., 99, p. 9747Bushmarinov, I.S., Lyssenko, K.A., Antipin, M.Y., (2009) Russ. Chem. Rev., 78, p. 28