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To account for frequently documented low-temperature deviations from Arrhenius rate law, the
proposed expansion of inverse activation energy against inverse temperature is shown to yield a first
order linearizing parameter which is formally correlated with Tsallis non-extensive classical statistical
mechanics. Its sign provides a heuristic criterion, especially appealing in biochemistry, for assigning

deviations as due either: (i) to quantum mechanical under-barrier tunneling, or (ii) to ‘classical’ collective
phenomena. For (i), an explicit relationship is here derived in terms of barrier features. Case (ii) typically
occurs in enzymatic or heterogeneous catalysis, in membrane mediated processes and in those controlled
by diffusion or by transport in general.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The rate constants k for most rate processes depend on absolute
temperature T according to the Arrhenius law. When extended to
low temperatures, deviations are observed even with no apparent
changes in the chemical mechanism or in the physical nature of the
moieties (e.g., their phase). The phenomenological description
individuates convex or concave In (k) vs 1/T plots, as Sub-Arrhenius
or Super-Arrhenius regimes; they correspond, respectively, to
higher or lower reactivity as temperature decreases, and therefore
to a decrease or increase of the apparent activation energy, E, [1,2].
Recent systematic investigations [2,3] lead to a simple formalism
in terms of a single deformation parameter, d, which is inspired
by Tsallis non-extensive statistical mechanics and exploits Euler’s
expression of the exponential function as the limit of a succession.

Formally, the d parameter accounts for positive or negative lin-
ear dependence of the inverse of activation energy against 1/T and
reasonably covers uniformly both regimes. However, they are in
general very different in nature, as discussed in Section 2. Evidence
is being accumulated that in the vast majority of cases Sub-Arrhe-
nius behavior arises because of quantum mechanical under-barrier
tunnel, while Super-Arrhenius often manifests because of collec-
tive phenomena, such as those amenable of treatment by the
non-extensive thermodynamics of Tsallis, and covers on ample
set of phenomena (e.g., transport, diffusion, such as those playing
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roles in catalysis, both enzymatic and heterogeneous). We empha-
size the contrast with quantum mechanical tunnel by referring to
the Super-Arrhenius case as basically amenable of a ‘classical’
description, as indeed often documented by successful classical
molecular dynamics simulations.

In Section 3 we describe a phenomenological formula, which
uniformly covers both regimes. The present study accounts for
the suitability of the deformation parameter d in the classical case,
and shows also that an explicit relationship can be given to first or-
der between d and height and width of the barrier, therefore inter-
preting the Sub-Arrhenius case according with the venerable
quantum mechanical models of Eckart [4], Wigner [5] and Bell
[6-8]. A summary and concluding remarks end the Letter in Sec-
tion 4. The Appendix collects some mathematical details.

2. The two regimes

This selected account of relevant research includes mostly re-
cent developments, amplifies and updates the scope of the discus-
sion already given previously [1,3].

Due to the importance of understanding the mechanisms in-
volved in physico-chemical transformations, studies have being
carried out of reaction rate constant dependence with temperature
for a large number of processes, not restricted to elementary chem-
ical reactions [9-12], involving particle diffusion in supercooled
liquids and glasses [13-15], electrical conductivity in ionic liquids
[16-18], enzymatic catalysis [19-24], food preservation processes
[25-27]. The Arrhenius rate law has been shown to be a fairly
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robust option in the description of the rate constant k, for most
cases. However, several experimental results have arisen that show
a significant deficiency on account of the non-linearity of the
Arrhenius plot at low temperatures.

The deviations from linearity in Arrhenius plot leads to two
quite distinct regimes (Figure 1) denoted Sub-Arrhenius and
Super-Arrhenius. When the experimental data represented in the
form of the Arrhenius plot (In (k) vs 1/T) feature a concave devia-
tion they are referred to as Sub-Arrhenius, otherwise they are
referred to as Super-Arrhenius. In a general way, there is a consen-
sus in the literature that processes that exhibit Sub-Arrhenius
behavior are intimately related to the quantum tunneling effect
of penetration of an energy barrier in the reaction path along the
potential energy surface, while Super-Arrhenius behavior is a
typical manifestation of contributions from classical collectives
phenomena, where transport (e.g., diffusion, membrane perme-
ability) of particles play a role, see also below.

There are several examples being provided of systems that
illustrate the two regimes. The reaction of a fluorine atom with

molecular hydrogen has been recently representing the prototypi-
cal case of Sub-Arrhenius behavior. For this system a series of the-
oretical and experimental kinetic data provide to validate
theoretical models for rate constants. This is perhaps the first
and only reaction for which exact quantum mechanical results
for various potential energy surfaces are available [3,9] providing
a benchmark for rate constants for a wide range of temperatures.
A demonstration is given of the clear Sub-Arrhenius behavior,
which shows up at low temperatures, as a manifestation of the
quantum mechanical under-barrier tunnel effect. See Section 4
for a very recent striking experimental test and similar results
now available for HD as a reactant, of interest for discussing also
the kinetic isotope branching ratio.

A few years ago, in an entirely different context, Ref. [11] has
also presented a series of kinetic data related to transfer of hydro-
gen between heavy atoms, according to the present nomenclature
showing strong Sub-Arrhenius behavior. Experimentally, rate
constants are obtained by means of Nuclear Magnetic Resonance
in liquids and solids. One of the systems studied in Ref. [11] is

k (a)

7 Super-Arrhenius
s

E! )

a
|
l
\

\ Super-Arrhenius

.” Sub-Arrhenius

L T
Ink (b) E, ©) ;
Sub-Arrhenius /
"""""" /
) /
Super-Arrhenius 7
Ve
7
N\ _ - -
\ _ -
\ e
Super-Arrhenius \ el
1T Sub-Arrhenius Ty
Ink-_ (©) 1 (f) d=-0.2
E
Quantum Regime “
Quantum Regime d=-01
d=-0.2
d=-0.1 d= 0.0
d= 0.0 (Arrhenius)
(Arrhenius)
d= 01 d= 04
Classical Regime
Classical Regime \ s= 0.2
’ d= 0.2
111 1T

Figure 1. Panel (a) illustrates the typical exponential growth of reaction rates k(T) as absolute temperature T increases. Experimental, theoretical and simulation data are
universally analyzed, panel (b), by an Arrhenius plot, where In (k) is reported against 1/T. Deviations from linearity at low temperatures can be observed in the plot as showing
either (i) a ‘concave’ behavior, i.e., higher than expected rates as temperature decreases, or (ii) a ‘convex’ curve, i.e., lower than expected rates as temperature decreases. We
denote (i) as Sub-Arrhenius behavior, discussed here as a manifestation of quantum mechanical tunneling through a potential energy barrier, and (ii) as Super-Arrhenius
behavior, often arising for collective phenomena, amenable of a classical mechanics interpretation. Panel (c) shows that the proposed d-Arrhenius formula (Eq. (2)) for the
rates allows to uniformly describe both regimes in terms of the deformation parameter d, the Sub- and Super-Arrhenius cases corresponding to d < 0 and d > 0, respectively.
The right hand side panels (d) and (e) show that deviations from constancy of the apparent activation energy, expected from the Arrhenius law, for a Sub-Arrhenius (Super-
Arrhenius) behavior the apparent activation energy decreases (increases) with decreasing temperature. Panel (f) finally exhibits the linear relationship of the inverse
activation energy with inverse temperature, basic to our derivation of the d-Arrhenius formula.
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e.g., tautomerism in porphyrins [28], where there is interconver-
sion between the structures by means of successive transfers of
protons, which therefore represent another group of reactions that
can show Sub-Arrhenius behavior, most likely to be attributed to
cases where quantum mechanical tunneling is operative. Refs.
[23,30] give further examples.

Super-Arrhenius behavior is amply documented in a variety of
collective processes, which are often satisfactorily simulated by
classical molecular dynamics (see e.g., Ref. [29] and the references
therein). It is important to stress that there is a marked difference
between the two physically distinct situations, for the description
of which we can often be misled by using the same keywords (pro-
ton, hydrogen or hydride tunneling), while one of them most likely
involves genuine quantum mechanical penetration through a bar-
rier in the potential energy surface, while the other one presum-
ably involves collectivity or transport, for example transfer
through the sieve of a molecular membrane (as e.g., in Ref. [1]),
or diffusion to the active site of a catalyzer, or even the macro-
scopic sliding of bacteria described in Ref. [30] and discussed in
Ref. [2]. For these reasons, we affirm that the Sub-Arrhenius case
explicitly requires a quantum mechanical treatment, while for
the Super-Arrhenius case a classical molecular dynamics approach
can be sufficient to generate often useful simulations.

Several investigations have revealed Super-Arrhenius behavior

for rates of enzymatic catalysis promoted processes [22,23,32],
such as those most likely involved in the plant respiration experi-
ments of Refs. [1,31]. The authors in Ref. [20] have observed Super-
Arrhenius behavior in the reaction of thermophilic alcohol dehy-
drogenase (ADH) suggesting that hydrogen tunneling makes a sig-
nificant contribution. However, according to the present view of
processes of enzymatic catalysis involving convex curvature, they
are to be taken as circumstantial evidence of collective phenom-
ena, involving for example classical diffusion or otherwise con-
trolled transfer, with quantum tunneling effect presumably not
playing a major role.

It has also to be noted that there is a considerable continuing
interest in basic features of the dynamics of complex or glass-form-
ing liquids and solids, particular attention being devoted to the
temperature dependence. The latter has been the subject of intense
research, which, for our purpose, can be described as follows [13].
In the vicinity of the glass transition temperature the viscosity and
diffusion coefficients of polymers and other glass forming liquids
are strong functions of temperature, and it is a frequently occurring
observation that materials exhibit deviation from Arrhenius
behavior. Non-Arrhenius relaxation rates in glassy materials can
be associated with thermally activated rearrangements of increas-
ing numbers of molecules as temperature decreases. In particular,
Garrahan and Chandler [32] conclude that relaxation times should
obey the Arrhenius like formula only at low temperatures rather
than, as is more commonly supposed, changing from Arrhenius
to Super-Arrhenius as the temperature decreases.

3. The uniform formula

Recently, several studies [33-35] have been devoted to describe
the non-Arrhenius behavior in chemical kinetics by classical con-
tinuous probability distributions inspired by Tsallis non-extensive
statistical mechanics [36,37]. The Figure 2 gives an illustration of
the probability distribution function.

”D<l‘%%f’

which tends to a Boltzmann-like distribution when d tends to zero,
according to the celebrated limit by Euler: in our formulation we
exploit the suitability of the parameter d to provide the degree of
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Figure 2. Tsallis-like probability distribution function (Eq. (1)) for several values of
the deformation parameters d. When the parameter d tends towards zero, the
Boltzmann distribution is recovered thanks to the Euler limit. Both distributions are
normalized to 1 for T — oo. Note that, for d > 0, the Tsallis-like distribution may not
be well defined above some specific energy values, as shown for d = 0.4 and d = 0.9.

deformation of the exponential function. See some elementary
mathematical details in the Appendix. The distribution (1) is a cor-
ollary of the Tsallis Thermodynamics, which he postulates as gener-
alization of the entropy to cover cases of non-extensivity. In the Ref.
[2,3] we proposed and tested the formula:

MD:APd%F 2)

RT

for rate constants deviating from Arrhenius behavior, and referred
to (2) as the ‘deformed Arrhenius’ (d-Arrhenius) equation. Eq. (2)
containing only three phenomenological parameters, A, Eq (see Sec-
tion 3.2) and d, only the latter appearing besides the familiar two of
the Arrhenius equation, to which Eq. (2) tends when d tends to zero.
The application to several kinetic problems with non-Arrhenius
behavior supports our suggestion that the parameter d could cover
both regimes of previous Section, discriminating them by its sign.
The value of d can, in principle, be determined by the microscopic
dynamics of the system, which is frequently unknown, so that d
has to be in general considered as phenomenological, except for
simple tunneling processes, as we will show below in Section 3.2.
From Figure 1(c), we can see that for d > 0 and d < 0, the d-Arrhenius
formula shows the typical deviation from linearity for the Super-
and Sub-Arrhenius cases, respectively.

Once shown that the formula provides a good option for the
description of non-Arrhenius behavior, it becomes a task of great
interest to establish the connection between the phenomenologi-
cal nature of the formula and the different physical origin of
processes exhibiting the Sub-Arrhenius and Super-Arrhenius
behaviors. The previous section discussed how ‘classical’ effects re-
lated to collectivity and transport of particles seem to be at the ori-
gin of most Super-Arrhenius cases (d>0), substantiating the
consistency of our formulation based on the Tsallis statistical
mechanics of non-extensive processes. However, the Tsallis-like
probability distribution of molecular velocities is essentially classi-
cal - like that of Boltzmann - and has to be analytically continued
in order to provide a physical model covering phenomena
associated to quantum mechanical effects [Sub-Arrhenius cases
(d < 0)]. Remarkably however, we will succeed below to establish
an explicit connection to first order between the present formula
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for the Sub-Arrhenius case and the approach by Bell [8] for quan-
tum mechanical tunneling.

3.1. The activation energy

As remarked previously [3], the expression for the activation
energy E, [8] implied in the d-Arrhenius Eq. (2) can be written in
the concise form

1 1 1
EE RT (3)

This Equation can be obtained by Eq. (2) directly applying the cur-
rent definition of the I[UPAC for the apparent activation energy [38]
as the negative of the logarithmic derivative of the rate constant
with respect to 1/RT:

7dlnI§(T) __ b _ @)

der)  (1-dg)

giving by rearrangement Eq. (3), which is a linear relationship be-
tween inverse activation energy and inverse temperature illustrated
in Figure 1(f). When regarded as the power expansion in inverse
temperature, basic in statistical thermodynamics, and truncated
to the second term, the d parameter is interestingly seen as playing
the role of the linearization parameter.

Further insight on the relationship (3) is gained by taking an
alternative route and inserting it in the first equality in Eq. (4), con-
sidered as a differential equation for k(T) when E, (T) is assumed to
be the known function of T given by 3. Eq. (4) is first order in the
variable 1/RT and is easily integrated specifying the lower limit
of the integration range at a standard-state temperature Ty, as
shown below:

1/RT _E, 1
Ink(T :/ 7°d(—>
M yrr, (1—dg) \RT

E, (T) =

:—%ln(l—d%>+%ln<l— RE—TOO> (5)
or
Ink(T) + In <1dEO)é:1n (ldEO>;. (6)
RT, RT
when d — 0, the term 1n(1 w%)ﬁ can be identified with the

Arrhenius pre-factor A, and the apparent activation energy E, be-
comes a constant and identified with Ey, recovering Arrhenius Equa-
tion, k = A exp(— %) In general, when d differs from zero, we obtain
the Tsallis-type of formula for the rate constant, Eq. (2).

3.2. The d parameter from features of the barrier

In order to establish an important connection with well known
tunneling models, the following will treat in detail the model of
Bell, which incorporates, at least regarding salient features, those
of Eckart [4] and Wigner [5], which have been generalized in var-
ious way through advanced semiclassical WKB and instanton
methods.

In his book in 1980 Bell [8] presented his approach [6,7] to at-
tempt to incorporate the effect of tunneling in kinetics. He pro-
poses a function for the energy dependence barrier permeability,
G(E), that was in accordance with the physical behavior revealed
from solvable quantum mechanical models, explicitly Eckart’s
[4]. The function proposed by Bell is given below:

-1

G(E) = 1 +e5“*%>] : (7)

where, { = 221/2mEy and 21 is the width of the barrier (see also be-

low). From this model of a quantum mechanical permeable barrier,
it was possible to calculate the tunneling correction as power
series:

M)

¢

Qpen = @
_ Eopeor® { _ B o C—EoB o
(é,_EOﬂ) (ZC—Eoﬁ)e +(3C_E0ﬂ)e s (8)

where g = .

For the case where, { > Eof (the case of more general interest of
kinetic problems of chemistry) the first order term need be
retained:

The model of Bell for the rate constant will be:

nEof
(% )> exp(~Eoff). (10)

sin (M
S

kgen(T) = A

where A is the pre-exponential factor.
Using the definition for activation energy (Eq. (4)), the following
equation is obtained [7]:

1 =E TE
EaBell:EO*ﬁ+ Cocotg( C0ﬁ>, (11)

To make a comparison between the Eqgs. (11) and (3), it is con-
venient to express the inverse energy of activation for the Eq. (11)
in a power series:

1 1 1/m\?* 1/m\?
— =4 (= +—(=) E 2+,,, 12
Epen  Eo 3(@) 4 9<C> op (12)

Disregarding the terms of order higher than one for Eq. (12) and
comparing with Eq. (3), we arrive at the required correlation for
the deformation parameter:

-3

The term % can be rewritten as a function of the penetration fre-

quency (v*) for crossing the barrier [8,39], £ = ’;‘TD obtaining:

1 /hv\?
d:’§(250> : (14)

This model provides a description of the deformation parameter
through the tunneling parameters: barrier height and frequency for
crossing the barrier at potential energy surface, as can be seen in the
Figure 3. The greater the barrier height and lower the frequency to
traverse the barrier this deformation parameter tends to zero
neglecting the effect of tunneling and retrieving the Arrhenius mod-
el (the Boltzmann distribution). See [40] for an extension of a Tsal-
lis-type Transition State Theory to cover the tunneling regime.
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Figure 3. The figure illustrates schematically a chemical reaction as proceeding from reactants to products along a path on a generally multidimensional potential energy
surface, here shown on a two dimensional cut. Zero point energies are neglected and E, is height of the barrier of the saddle point where the transition state is located,
corresponding to the Arrhenius activation energy. The quantum mechanical tunneling occurs as penetration of the barrier, with a penetration frequency given to first order by
v*. According to our treatment the activation energy varies with temperature according to the left hand formula, where the d parameter is related to v* and Ey by the formula

in the right hand side.

4. Summary and final remarks

A summary of results presented in the previous sections is dis-
played in Table 1. Nomenclature, definitions, physical and chemical
implications, the use of the approach and exemplary aspects are
listed. A few remarks follow.

An important word of caution involves the general validity of
the distinctions of the two regimes, emphasized in this Letter.
We would not be surprised that additional work will discover
counter examples, but we believe that the classification will none-
theless bear a heuristic validity.

It is interesting to read what Bell wrote in its impressive 1980
[8] book summarizing more than 40 years of achievements on
the main consequences of occurrence of quantum mechanical tun-
neling in chemistry (pp. 75-76, rearranged):

‘The most useful results are obtained especially when experi-
ments can be carried out over a wide range of temperature, prefer-
ably including low ones. There will be deviations from simple

Table 1
Nomenclature and Confrontation of the two regimes.

Arrhenius equation in the sense that the apparent activation energy
will decrease with decreasing temperature, and at sufficiently low
temperatures the reaction velocity will become independent of the
temperature’.

Accordingly, encouraged by the first demonstration by exact
quantum mechanical calculations for the F + H, reaction (Ref. [9])
and the just announced experimental confirmation [41], we have
been careful to speak of tunneling in this spirit for the Sub-Arrhe-
nius regime. However, the biochemical literature, at ever increas-
ing frequency, includes tunneling in the terminology for Super-
Arrhenius behavior, and its manifestation in convex Arrhenius
plots, in which case we would prefer a nomenclature such as e.g.,
hydrogen transfer, transport across membranes and the like. This
also in view of the fact that in most cases simulations are carried
out by recourse to classical molecular dynamics.

Bell goes on saying (p. 76) ‘the study of hydrogen isotopic effects
provides much more useful experimental criteria of tunneling’. Again,
our exact quantum mechanical treatment of the F+ HD reaction,

Sub-Arrhenius

Super-Arrhenius

Arrhenius plot, In (k) vs 1/T (k = rate coefficient, T = Absolute
temperature)

Temperature dependence of activation energy, E,

Heuristic criterion

Concave plot

Inverse E, vs inverse T linear relationship?, d<0
& = & — dgr (Eo = barrier height, d = deformation
parameter)

Connection of d with

2
d=-1 (’z%) 4 y* = penetration frequency).

)

E, increases with T
Quantum phenomena (Tunneling)

Wigner” and Bell® tunneling models.

Convex plot

E, decreases with T

Classical phenomena (Collective, transport, diffusion,
enzymatic and heterogeneous catalysis)

d>0

Tsallis’s non-extensivity parameter®, q = 1-d Truhlar-
Kohen curvature parameter’ d = —2¢

a Ref. [2].

b Ref. [5].

< Ref. [34,35].
4 This work.
¢ Ref. [36].
[ Ref. [24].
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yielding either DF + H or HF + D [42], as will be shown by addi-
tional results in the near future [43,44], substantiates these views.

A very recent review examines how ‘Hydrogen tunneling links
protein dynamics to enzyme catalysis’ [45], and the nomenclature
sometimes appears to differ from ours and caution has to be taken
with respect to the underlying physico-chemical interpretation.
However, it shows how the scope of this research is being greatly
amplified. This reference and several others therein discuss exam-
ples of varied relevance to the present Letter. However, a remark
concerns occasional fits of data generically showing temperature
breaks in Arrhenius plots, use often being made of two piecewise
linear behaviors. Again, it is our opinion that one should distin-
guish the two regimes and use of our heuristic criterion may help.
For the concave case, continuous curve fits according to the quan-
tum mechanical tunnel formula are probably the right choice, also
in view of the fact that the elementary principles of the chemical
kinetics of mechanisms involving multiple processes enforce the
concept of rate determining step: in the vast majority of conceiv-
able situations, this excludes concave piecewise behavior of
sequential Arrhenius segments. For appraisal of the convex plots
fitted by two segments, see cautionary remarks in Ref. [1] regard-
ing unwanted excessive use of parameters. Actually, often experi-
mental data are not sufficiently accurate to distinguish between
a piecewise segmented convex fit with temperature break point,
and a continuous curve, possibly obeying our formula, which we
recommended as to be preferred for testing.

Basic challenges for future theoretical work regard both regimes
in a different way. A main result of this Letter is the correlation of
the parameter d with parameters of the barrier in the potential en-
ergy surface penetrated by quantum mechanical tunneling.

Agreement with recently available exact quantum mechanical
results and their experimental confirmation in a prototypical case
is very satisfactory: it also propitiated extension to a recently
tested Tsallis-type Transition State Theory [33] continued to in-
clude tunneling [40]. However, the complete characterization of
the d parameter in the convex case still awaits to be put on a more
solid ground beyond the argument that we provide, based on the
formal analytical continuation from the correlation with the classi-
cal Tsallis non-extensive distribution.

This correlation, on the other hand, has to be regarded as phe-
nomenological, work being needed to give d an interpretation pro-
viding its meaning regarding both the properties of the system and
possibly the route to its quantitative appraisal, at least in simple
model cases. In this effort, one might be helped by alternative
(see e.g., Ref. [46]) approaches to thermodynamics and the associ-
ated non-Boltzmann distributions.
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Appendix A. Essentials of the deformed algebra of
non-extensive statistical thermodynamics

In the main text, the formal relationship was noted between the
present d-Arrhenius approach and the probability distribution
function in Tsallis statistics. see Refs. [36,37], and further develop-
ments, e.g., Ref. [47]. Basic to the formalism is the remarkable

discovery by Euler (see Ref. [48]) that the exponential function
can be considered as the limit of a succession:

n—oo

exp(x) = lim (1 + %) (A1)

Identifying the deformation parameter d as the continuous gen-
eralization of 1/n and defining a d-exponential as follows:

expy(X)=(1 + dx)i (A2)

(compare with Eq. (1)), a deformed algebra can be constructed, see
Ref. [49] and references therein. In short, a d- logarithm can be de-
fined analogously:

d _

Ing="—"1 (A3)
d

and interesting properties can be established, such as the following:
eXpy(X)expy(y) = expy(x +y + dxy) (A4)
Ing(xy) = Ing(x) + Ing(y) + dlng(x)Ing (y) (A5)

_ Ing(x) —Ing(y)
Ing(x/y) = Trdingy) (A6)
L expyx)) = lexp, ()] (A7)
dX d d

_ 1 1+d

| expatan)ax = g lexpy(a) (A8)

Note a change in notation here, needed in order to avoid ambi-
guities with alternative usages of the g symbol in modern mathe-
matical analysis and algebras, see for example Ref. [50]: in terms of
Tsallis’ q, we have d =1-q. It is important to remark also that in
most applications of Tsallis statistics the range of q is restricted be-
tween 0 and 1, while the extension to negative d is crucial to our
treatment of the quantum tunneling regime.
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