598 research outputs found

    Nanoscale and macroscale characterization of the dielectric charging phenomenon and stiction mechanisms for electrostatic MEMS/NEMS reliability

    Get PDF
    Les phénomènes de chargement des diélectriques constituent l'un des principaux mécanismes de défaillance des microsystèmes à actionnement électrostatique, ce qui limite la commercialisation de ce type de dispositifs. Par exemple, dans le cas de micro-commutateurs capacitifs ce chargement entraîne des problèmes de collage entre la membrane actionnable et la surface du diélectrique qui recouvre l'électrode d'actionnement. Malgré de nombreux travaux réalisés dans le monde, les phénomènes de chargement des diélectriques sont encore mal compris aujourd'hui et les mécanismes de défaillances associés peu explicités. Par ailleurs de nombreuses méthodes de caractérisation ont été développées afin d'étudier ces phénomènes : capacité/tension dans les micro-commutateurs capacitifs, courant/tension dans les capacités MIM (Métal-Isolant-Métal). Bien que très souvent utilisées, ces méthodes donnent des résultats qui dépendent fortement de la nature du dispositif utilisé. Dans les capacités MIM par exemple, la décharge a lieu en situation de court-circuit et les charges injectées dans le diélectrique sont collectées seulement par l'électrode qui a servi à réaliser l'injection. Cette configuration est l'inverse de celle qui a lieu réellement dans les microsystèmes pour lesquels les charges sont injectées par la membrane actionnable et collectées par l'électrode d'actionnement, puisque la membrane ne touche pas le diélectrique lorsque la tension est supprimée. Par ailleurs les mécanismes de défaillances sont souvent liées à des phénomènes multi-physiques (électrique, mécanique, thermique). Ainsi le chargement des diélectriques peut être couplé notamment à des problèmes de fatigue mécanique de la membrane, ce qui peut fausser les interprétations. Des études récentes ont par ailleurs montré que les phénomènes tribologiques, comme l'adhésion et la friction, sont cruciaux pour les MEMS/NEMS et peuvent affecter radicalement leurs performances. Les micro-commutateurs RF étant basés sur le contact intermittent entre deux surfaces (membrane métallique et diélectrique), la fiabilité des ces composants est également impactée par ces phénomènes de surface. Des études sur la micro-nanotribologie appliquée aux micro-commutateurs RF sont donc nécessaires pour comprendre les phénomènes qui se passent aux interfaces et pour coupler ces phénomènes avec le chargement des diélectriques. Les travaux sur le chargement des diélectriques présentés dans ce mémoire sont basés sur la microscopie à force atomique (KPFM, FDC) et permettent de supprimer les inconvénients des méthodes conventionnelles. Le diélectrique étudié est le nitrure de silicium obtenu par PECVD pour des micro-commutateurs RF à contact capacitif. Les méthodes utilisées permettent de réaliser l'étude des diélectriques à l'échelle nanométrique grâce à l'utilisation de l'AFM dont la dimension de la pointe est comparable aux aspérités des microstructures. Différentes structures de tests ont été caractérisées incluant des films diélectriques, des capacités MIM et des micro-commutateurs. La pointe de l'AFM est utilisée pour réaliser l'injection des charges (comme dans le cas d'une aspérité en contact avec le diélectrique), mais également pour mesurer le potentiel de surface et la force d'adhésion. Les résultats obtenus ont été comparés à des mesures de charges et décharges plus conventionnelles sur des capacités MIM et sur des micro-commutateurs RF. Tous ces résultats ont également été comparés à des données de la littérature provenant de différents composants. L'influence de plusieurs paramètres clés sur le chargement des diélectriques a également a également été étudiée. Différentes épaisseurs de SiNx déposées sur de l'or (évaporé et électro-déposé), sur du Titane et sur du silicium ont été analysées. Différents modes d'élaboration du SiNx PECVD ont été utilisés en changeant le ratio des gaz, la température de dépôt, la puissance et la fréquence RF. Des analyses physico-chimiques ont également été menées pour déterminer les liaisons chimiques et les compositions des films de SiNx (FTIR, XPS). Ces données ont été utilisées pour expliquer les résultats électriques obtenus. Différentes conditions de chargement ont également été explorées : amplitude, durée et polarité de la tension, taux d'humidité, contamination dues aux hydro-carbones. Les différents phénomènes tribologiques (adhésion, friction) ont aussi été étudiés à l'échelle nanométrique sous différentes tensions et pour différents taux d'humidité. A partir de ces études, deux principaux mécanismes de collage dans les microsystèmes à actionnement électrostatique ont ainsi été explicités : le chargement des diélectriques et la formation d'un ménisque d'eau. L'interaction entre ces deux mécanismes a également été mise en évidence et a permis de mieux comprendre les phénomènes de collage dans les MEMS à actionnement électrostatique.The reliability of electrostatically actuated micro- and nano-electromechanical systems (MEMS and NEMS) is determined by several failure modes which originate from different failure mechanisms. Among various reliability concerns, the dielectric charging constitutes major failure mechanism which inhibits the commercialization of several electrostatic MEMS devices. In electrostatic capacitive MEMS switches, for example, the charging phenomenon results in shifting the electrical characteristics and leads to stiction causing the device failure. In spite of the extensive study done on this topic, a comprehensive understanding of the charging phenomenon and its relevant failure mechanisms are still missing. The characterization techniques employed to investigate this problem, though useful, have serious limitations in addition to the missing correlation between their results. On the other hand, recent studies show that tribological phenomena such as adhesion and friction are crucial in MEMS/NEMS devices requiring relative motion and could affect their performance. Since the operation of MEMS switch is based on intermittent contact between two surfaces, the movable electrode and the dielectric, critical tribological concerns may also occur at the interface and influence the device reliability. These concerns have not been investigated before, and consequently, micro/nanotribological studies are needed to develop a fundamental understanding of these interfacial phenomena. Also, the multiphysics coupling between the charging phenomena and those expected tribological effects needs to be studied. This thesis addresses the abovementioned weaknesses and presents numerous novel characterization techniques to study the charging phenomenon based on Kelvin probe force microscopy (KPFM) and, for the first time, force-distance curve (FDC) measurements. These methods were used to study plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films for application in electrostatic capacitive MEMS switches. The proposed methods are performed on the nanoscale and take the advantage of the atomic force microscope (AFM) tip to simulate a single asperity contact between the switch movable electrode and the dielectric surface. Different device structures were characterized including bare dielectric films, MIM capacitors, and MEMS switches. In addition, the charge/discharge current transients (C/DCT) and thermally stimulated depolarization current (TSDC) assessment methods were used to study the charging/discharging processes in metal-insulator-metal (MIM) capacitors. A comparison and correlation between the results from the investigated characterization techniques were performed. Moreover, a correlation between the obtained nanoscale/macroscale results and the literature reported data obtained from device level measurements of actual MEMS devices was made. The influence of several key parameters on the charging/discharging processes was investigated. This includes the impact of the dielectric film thickness, dielectric deposition conditions, and substrate. SiNx films with different thicknesses were deposited over metal layers and over silicon substrates to study the effect of the dielectric thickness. The impact of the dielectric deposition conditions was investigated through depositing SiNx films using different gas ratio, temperature, power, and RF modes. To study the influence of the substrate, SiNx layers were deposited on evaporated gold, electrochemically-deposited gold, evaporated titanium layers, and over bare silicon substrates. Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) material characterization techniques were used to determine the chemical bonds and compositions, respectively, of the investigated SiNx films. The obtained data from these techniques were used to explain the electrical characterization results. The impact of electrical charge injection conditions, which are the voltage amplitude, polarity and duration, was also explored. Finally, the influence of the relative humidity, environment medium, and contaminants on the charging phenomenon was studied. Furthermore, the thesis investigates different tribological phenomena at the interface between the two contacting surfaces of electrostatic MEMS switches as well as their multiphysics coupling with the dielectric charging failure mechanism. The adhesive and friction forces were measured on the nanoscale under different electrical stress conditions and relative humidity levels using an AFM to study different stiction mechanisms. In these devices, stiction can be caused by two main mechanisms: dielectric charging and meniscus formation resulting from the adsorbed water layer at the interface. The effect of each mechanism as well as their multiphysics interaction and impact on the overall adhesion or stiction was quantified. Finally, the impact of the dielectric charging on the friction force between the two contacting surfaces of the switch has been studied

    The embodied experience of women who suffered from heart attacks: an existential view

    Get PDF
    The purpose of this research is to gain a deeper understanding of the embodied experience of women who suffered from heart attacks. The heart attack is primarily seen as a medical concern and is treated on that basis without giving significant attention to the person’s lived experience. Recently, researchers have attempted to bring the two monologues into a dialogue, looking at physical illness beyond its medical or biological causes. This research aims to build on the following idea, with the attempt of coming closer to the understanding of women’s embodied experience of a heart attack. Interpretative Phenomenological Analysis was chosen to help explore this phenomenon. Seven women who have experienced at least one heart attack in the past five years were interviewed using semi-structured interviews. The data analysed presented five main themes: experience of the heart attack, the self, loss, roles and responsibilities, and being-with-anxiety. Findings suggest that the embodied experience of having a heart attack is a complex phenomenon, one which impacts the women’s entire existence. This research provides an in-depth study to understand the lived experience of these women before the heart attack as well as after. The results add to the work of counselling psychologists when dealing with such a phenomenon, and suggestions on how to integrate it with existential work are discussed

    Association of Gut Microbiota Composition with Alzheimer’s-Like Disease in A Rat Model

    Get PDF
    With many countries turning ‘grey’ and facing an issue with aging populations, the risk of developing one form of neurodegenerative disease is increasing. Dementia, being the most common syndrome resulting from neurodegeneration, severely affects memory and cognitive functions. Alzheimer’s disease (AD) is the most common neurodegenerative disorder, with an estimated 615,000 new cases will be added to the existing 5.7 million by 2030 (Alkasir et al., 2017). In the current study, we establish a sporadic AD-like rat model by injecting STZ intracerebrally. Stool samples were collected at two time points; after three weeks for the acute stage, and 3 months for the chronic stage. Behavioral results show a significant difference in the working memory of the acute and chronic STZ-induced sAD-like rats when compared to age matched control groups. 16S rRNA sequencing on 18 samples revealed that Alpha diversity showed a significant difference between the STZ-induced sAD-like groups and control groups (p-value In conclusion, this project did not align with the reported literature in all aspects, although there was a decrease in the Faith PD alpha diversity index, no significant differences were observed in the beta diversity index and relative abundance of bacteria among the groups. That could be due to the small number of samples used within each group. Future work should increase sample size to produce statistically significant results. In addition, it is advisable to supplement the fecal samples collected from our experimental groups with CSF to add biomarker detection to correlate with bacterial taxa discovered

    Mathematical model to simulate a hybrid lighting system

    Full text link
    Hybrid solar lighting (HSL) technology is a relatively new technology to utilize natural sunlight along with the traditional electric lighting to light the interior spaces. HSL systems concentrate the sunlight onto a bundle of optical fibers. The optical fibers are routed into the interior space and coupled with cylindrical rods to diffuse the light. A lighting sensor modulates the amount of electric energy depending on the amount of natural light available; This study presents a simplified mathematical model to predict the output of the HSL system based on the amount of the available solar radiation. The model is verified via real-time measurement of the output of the system. The monthly savings on electric energy are estimated. The break-even cost of the system is estimated based on the electricity saving. The effect of the length of the fibers on the output and the savings is also investigated

    Predictors of outcomes in diabetic foot osteomyelitis treated initially with conservative (nonsurgical) medical management: A retrospective study

    Get PDF
    The optimal way to manage diabetic foot osteomyelitis remains uncertain, with debate in the literature as to whether it should be managed conservatively (ie, nonsurgically) or surgically. We aimed to identify clinical variables that influence outcomes of nonsurgical management in diabetic foot osteomyelitis. We conducted a retrospective study of consecutive patients with diabetes presenting to a tertiary center between 2007 and 2011 with foot osteomyelitis initially treated with nonsurgical management. Remission was defined as wound healing with no clinical or radiological signs of osteomyelitis at the initial or contiguous sites 12 months after clinical and/or radiological resolution. Nine demographic and clinical variables including osteomyelitis site and presence of foot pulses were analyzed. We identified 100 cases, of which 85 fulfilled the criteria for analysis. After a 12-month follow-up period, 54 (63.5%) had achieved remission with nonsurgical management alone with a median (interquartile range) duration of antibiotic treatment of 10.8 (10.1) weeks. Of these, 14 (26%) were admitted for intravenous antibiotics. The absence of pedal pulses in the affected foot (n = 34) was associated with a significantly longer duration of antibiotic therapy to achieve remission, 8.7 (7.1) versus 15.9 (13.3) weeks (P = .003). Osteomyelitis affecting the metatarsal was more likely to be amputated than other sites of the foot (P = .016). In line with previous data, we have shown that almost two thirds of patients presenting with osteomyelitis healed without undergoing surgical bone resection

    Parasitic light absorption, rate laws and heterojunctions in the photocatalytic oxidation of arsenic(III) using composite TiO2/Fe2O3

    Get PDF
    Composite photocatalyst-adsorbents such as TiO2/Fe2O3 are promising materials for the one-step treatment of arsenite contaminated water. However, no previous study has investigated how coupling TiO2 with Fe2O3 influences the photocatalytic oxidation of arsenic(III). Herein, we develop new hybrid experiment/modelling approaches to study light absorption, charge carrier behaviour and changes in the rate law of the TiO2/Fe2O3 system, using UV-Vis spectroscopy, transient absorption spectroscopy (TAS), and kinetic analysis. Whilst coupling TiO2 with Fe2O3 improves total arsenic removal by adsorption, oxidation rates significantly decrease (up to a factor of 60), primarily due to the parasitic absorption of light by Fe2O3 (88% of photons at 368 nm) and secondly due to changes in the rate law from disguised zero-order kinetics to first-order kinetics. Charge transfer across this TiO2-Fe2O3 heterojunction is not observed. Our study demonstrates the first application of a multi-adsorbate surface complexation model (SCM) towards describing As(III) oxidation kinetics which, unlike Langmuir-Hinshelwood kinetics, includes the competitive adsorption of As(V), and we further highlight the importance of parasitic light absorption and catalyst fouling when designing heterogeneous photocatalysts for As(III) remediation

    Energy Efficient, Cost-Effective Power and Co-Generation Technologies: Techno-Environmental Analysis

    Get PDF
    Development of energy solutions for addressing grid resiliency and energy efficiency while lowering greenhouse gas emissions is critical in today’s energy scenario. Chemical energy provides on demand power. Cogeneration technologies offer numerous benefits in meeting the growing energy demand while lowering the impact on environment. Utilization of waste heat from prime movers in conjunction with energy efficient heat pumps and renewable photovoltaics is an attractive approach. Efficient utilization of available resources to support current and future building energy needs targeting grid resiliency, energy and environmental security via co-generation approaches is the focus of this study. A detailed techno-environmental analysis of hybrid system configurations consisting of conventional and emerging technologies utilizing natural gas, electric grid, and renewable power resources along with heat recovery systems and heat pump technologies are analyzed and presented. The key objective is to present integrated system configurations and thermodynamic analysis of various co-generation systems suitable for providing building energy. Design solutions targeting low carbon footprint and high energy efficiency are presente

    Domestic Dishwasher Simulated Energy Efficiency Evaluation Using Thermoelectric Heat Pump for Water Heating and Dish Drying

    Get PDF
    A quasi-steady state, coupled thermoelectric and heat transfer model heat and mass transfer lumped model was developed to predict the energy consumption and drying performance of domestic dishwashers. A numerical finite element solution was applied, assuming that the following components could each be treated as a lumped thermal capacitance: dish load, tub, wash water, and air in tub. The model was used to predict the energy consumption savings of heating water using a thermoelectric heat pump that extracts heat from the surrounding air, and the drying performance of circulating tub air through the cold and then hot side of TE modules
    • …
    corecore