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ABSTRACT 

Development of energy solutions for addressing grid resiliency and energy efficiency while lowering greenhouse gas 
emissions is critical in today’s energy scenario. Chemical energy provides on demand power. Cogeneration 
technologies offer numerous benefits in meeting the growing energy demand while lowering the impact on 
environment. Utilization of waste heat from prime movers in conjunction with energy efficient heat pumps and 
renewable photovoltaics is an attractive approach. Efficient utilization of available resources to support current and 
future building energy needs targeting grid resiliency, energy and environmental security via co-generation approaches 
is the focus of this study. A detailed techno-environmental analysis of hybrid system configurations consisting of 
conventional and emerging technologies utilizing natural gas, electric grid, and renewable power resources along with 
heat recovery systems and heat pump technologies are analyzed and presented. The key objective is to present 
integrated system configurations and thermodynamic analysis of various co-generation systems suitable for providing 
building energy. Design solutions targeting low carbon footprint and high energy efficiency are presented. 

1. INTRODUCTION 

Recent increases in wind and solar energy generating capacity have done much to reduce the reliance on carbon fuels, 
but an important complementary strategy is using available resources including fuels more efficiently. Growth in 
energy demand is certain. For instance, according to Energy Information Agency (EIA) (“Energy Information 
Agency,” 2019), nearly 50% increase in world energy usage by 2050 is projected, led by growth in Asia. 33% of 
vehicles coming out of assembly lines are expected to be electric by year 2040 (“International Energy Agency,” 2020); 
66% of world’s 9.5 Billion population will be living in urban areas by 2050 (“United Nations,” 2018). Given the 
climate urgency, and this demand growth, sustainable technologies are needed in meeting the energy needs 
responsibly. Bridging technologies enabled by renewable fuels (e.g. biogas, renewable hydrogen, renewable methane, 
ethanol, etc.) and low carbon fuels are necessary while we work towards our long-term vision of 100% renewable, 
carbon-free electricity. These available resources can fulfill immediate needs but will require enabling technologies 
to utilize them as cleanly and efficiently as possible with fewer greenhouse gas emissions. 

Currently available energy efficient technologies are still languishing, mostly impeded by cost, reliability, 
lack of education, policy assertiveness, retrofitability and incentives, etc. Deeper penetration of such technologies (e.g. 
DERs, CHPs, Heat Pumps) into energy markets is required as they are considered deployable technologies and are 
within reach to make a significant difference in primary energy consumption while improving energy resiliency. As 
shown in Figure 2, taken from EIA (“Energy Information Agency,” 2019), 65% of the primary energy is unutilized or 
lost in the traditional “electric power sector” and this is 2019 data!, 22 years after Kyoto protocol, 5 years after Paris 
accords. Cogeneration and utilization of on-site energy via nano CHP/micro-CHP/distributed energy resources (DER) 
are attractive options in bridging the gap until we achieve 100% renewable, carbon-free energy production for 
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consumption in the residential and commercial buildings. These technologies have a complementary role in future 
electric systems, although energy storage and demand side response are considered to be the key differentiating factors 
in addressing grid resiliency (Allan et al., 2015, Vahl et al., 2013, Huda and Zivanovic, 2017). Operational system 
balancing strategies (Manfren et al., 2011), energy policy for addressing grid resiliency (Bouffard and Kirschen, 1982, 
Colmenar-Santos et al., 2008) and environmental aspects will dictate the penetration of such technologies and their 
deployment levels in the next generation electric system (Foley et al., 2010). 

Figure 1: U.S. Energy consumption by source and sector 

In this context, this paper presents an analysis of different hybrid system configurations for efficient energy 
utilization in buildings by studying the influence of design and operational parameters on the primary energy 
consumption, and environmental impact. Different energy efficient technologies such as fuel driven cogeneration 
systems, hybrid power systems and integrated heat pumps in lowering the primary energy consumption are analyzed. 
Configurations including primary movers such as fuel cells, heat engines, and their combinations with heat pumps are 
systematically analyzed and discussed. The focus was on the energy and environmental analysis and the economic 
assessment of each configuration has been excluded. 

2. APPROACH/METHODOLOGY 

The main methodology involved modeling of the cogeneration system using thermodynamic process simulation 
software package ChemCAD® (Version 7.1) to assess the electric and thermal output for a given load demand and 
fuel supply. Process flow diagram and the simulation model utilized for this study is shown in Figure 2. The model 
consists of three major unit operations: (i) a simplified generic prime mover with defined electrical and thermal 
recovery efficiency,  (ii) a heat recovery system in the form of hot water storage tank and an optional heat exchanger 
to support further heat transfer, and (iii) electrical heat pump consisting of compressor, expansion valve, and 
condenser, evaporator coils. Primary energy sources consisted of the central power plant/electrical grid, natural gas, 
and optional Photovoltaic (PV). The impact of different configurational aspects was studied in the case of residential 
scale buildings consuming 30 kWh/day of combined thermal and electrical energy. 
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The primary design variables consisted of: 
 Kilo-watt power rating of the prime mover (PM) 
 Coefficient of performance (COP) of the electrical heat pump system 
 Electrical grid efficiency 
 Daily operational hours of the PM 
 Electrical efficiency of the PM 

The influence of these design parameters was studied for different configurations to calculate the primary energy 
efficiency, and carbon intensity. Primary energy efficiency is defined as the energy consumed by the building vs. 
energy consumed at the source. Carbon dioxide footprint of each configuration was calculated based on the carbon 
intensity of the electrical grid and the CO2 produced via natural gas consumption by the prime mover, assuming 100% 
conversion. All the assumptions made in this analysis are presented in the table below. 

Natural Gas

Air Prime Mover 

Flue Gas 

Hot water

Return Air 

Cold water 

Supply Air 

Electrical Heat Pump 

Power system with heat recovery 

Water
Heater 
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Figure 2: Thermodynamic simulation model adopted for evaluating cogeneration system to assess electrical and 
thermal outputs. Also shown is the electrical heat pump system in conjunction with the cogeneration system. 

Parameter Value Component
Electrical efficiency of the PM 25 – 50% Prime mover 
Electrical efficiency of the grid/power 30 – 60% Grid 
plant 
Waste heat recovery efficiency 80% Prime mover 
Waste heat energy stream temperature 150°C Prime mover 
PM operational hours 3-24 hours/day Prime mover 
Daily electrical energy consumption 18 kWh Building 
Daily total thermal energy consumption 12 kWh Building 
Daily space heating energy demand 6 kWh Space heating 
Daily water heating energy demand 6 kWh Hot water 
Efficiency of the hot water storage tank 20% Hot water tank 
(energy loss) 
COP 1-5 Heat Pump 
Carbon dioxide intensity 0.2 – 0.7 kg/kWh Grid 
Natural gas site delivery efficiency 92% Fuel 
Natural gas higher heating value (HHV) 36.6 MJ/m3 Fuel 
PV, kilo Watt capacity 0 – 0.5 kW PV

Carbon dioxide emission for each configuration was calculated according to equation 1, where the efficiency of power 
source (ȠPS) and its power level (PPS) were taken in to account while achieving complete fuel conversion in the 
thermodynamic model shown in Figure 2. 
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௉ುೄ ସସ 
𝐶𝑂ଶ,௧௢௡/௬௥ = ቀ( ) ∗ 365 ∗ 24ቁ ∗ ൫𝐻𝐻𝑉௙௨௘௟ ൯ ∗ (1) 

ƞುೄ ଵ଴ల 

Primary energy efficiency (ηPE) was calculated according to equation 2, where kWhbldg. is the total daily energy 
consumption of the building in kWh (30 kWh), while kWhGrid is the daily building energy supplied by the grid, ηGrid 

is the electrical efficiency of the grid, PMfuel is the total daily fuel consumption by the PM (in m3), HHVfuel is the fuel’s 
higher heating value, Site factorfuel is the fuel delivery efficiency to the building. 

൫𝑘𝑊ℎ௕௟ௗ௚൯
 𝜂௉ா = (2) 

𝑘𝑊ℎீ௥௜ௗ 𝑃𝑀௙௨௘௟ ∗ 𝐻𝐻𝑉௙௨௘௟ ∗ 0.2778 
൤ + ൨

𝑆𝑖𝑡𝑒 𝑓𝑎𝑐𝑡𝑜𝑟௙௨௘௟ 𝜂ீ௥௜ௗ 

3. RESULTS AND DISCUSSION 

As described above, the impact of different design variables and power configuration on energy efficiency and carbon 
footprint was studied. The influence of electrical power rating of the prime mover (PM) on overall energy balance 
was investigated in a configuration where the waste heat from the PM was utilized for water heating while space 
heating energy was supplied by a vapor-compression cycle based electrical heat pump with a COP rating of 3.0. PM’s 
electrical efficiency was assumed to be 30% while that of the electrical grid was assumed to be 33%. As shown in 
Figure 3, the PM’s power rating was scaled up to 1 kW while calculating the yearly electrical grid purchases and 
primary energy consumed to support the daily energy requirement of 30 kWh. Also shown is the total annual carbon 
dioxide emissions in supporting the building’s energy load while accounting for on-site emissions associated with the 
PM as well as a carbon intensity of 0.63 kg/kWh of the electrical grid. It can be noticed that the utility purchases 
decrease as the PM capacity is scaled up to 1 kW at which point excess electricity of 1.46 MWh/year is produced in 
addition to meeting the annual electrical demand of 10.95 MWh. However, excess thermal energy increases 
significantly as the PM’s power output increases. Total primary energy consumption is the lowest for the 0.25 kW 
system where the excess thermal energy is the lowest and the carbon dioxide emissions are ~4.5 tons per year, 
compared to 6.9 tons per year from an all electrical grid powered residential building (i.e. no PM on site), which 
accounts to ~ 35% reduction in CO2 emissions. 
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Figure 3: Influence of PM’s power rating on grid purchases, primary energy, and carbon footprint. Waste heat 
utilization for water heating only. Space heating via heat pump. 

The configuration described above was further studied by changing the COP of the heat pump. The power rating of 
the prime mover was fixed at 0.5 kW with 30% electrical efficiency and operating continuously while rest of the 
configurational, energy, and efficiency values were maintained the same. As can be seen in Figure 4, annual electrical 
grid purchases decrease as the COP increases from 1 to 5, effectively increasing the primary energy efficiency from 
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39% to 48% while also lowering the total annual carbon dioxide emissions from 5.3 to 4.4 tons per year. It has to be 
noted that the only variance in these configurations is the COP of the space heating device while the onsite PM supplies 
12 kWh per day of electrical energy and the generated waste heat from the PM is utilized in meeting the water heating 
loads with an additional 10 kWh per day of excess unutilized thermal energy. This analysis provides insights into the 
positive influence of COP improvement on the overall energy efficiency of the system considered. 

The influence of electrical grid efficiency and its carbon dioxide intensity were also studied for the above 
configuration by assuming the COP of the space heating device at 3.0 while utilizing the 0.5 kW prime mover 
operating continuously at 30% electrical efficiency. As shown in Figure 5, the primary energy efficiency of the hybrid 
power configuration with the 0.5 kW prime mover onsite increases with increase in the electrical grid efficiency. 

Figure 4: Heat Pump COP impact on grid purchases, primary energy, and carbon footprint. Waste heat utilization 
for water heating only. Space heating via heat pump. 

However, the positive influence of the cogeneration system onsite diminishes as the electrical grid becomes more 
efficient. For instance, the hybrid cogeneration system’s primary energy efficiency is ~ 49% if the electrical grid is 
40% but the efficiency gain shrinks if the electrical grid efficiency increases to 50% where the primary energy 
efficiency is ~ 53%. The positive impact of the cogeneration system completely disappears if the electrical grid 
efficiency increases to 60%. 

Similarly, the presence of the hybrid cogeneration system onsite is more beneficial in terms of total carbon 
dioxide emission reduction if the electrical grid is less than 50% efficient. As the carbon intensity of the electrical grid 
decreases from 0.69 (at 30% grid efficiency) to 0.21 kg/kWh (at 60% grid efficiency), the combined carbon intensity 
also decreases but is effectively higher compared to a 60% efficient electrical grid. 
The electrical efficiency of the cogeneration system configuration assumed in the above analysis was 30%, which 
plays a significant role in the observed lower primary energy efficiency and higher carbon intensity when installed in 
an application being serviced by a highly efficient electrical grid, for instance 60%. Hence, the influence of prime 
mover’s electrical efficiency was also studied in detail by repeating the efficiency assessment at different values in 
the range of 25% to 50% in conjunction with a 60% efficient electric grid with a carbon intensity of 0.21 kg/kWh.  

Figure 6 displays the primary energy efficiency and effective carbon dioxide intensity of the 0.5 kW prime 
mover operating at different electrical efficiencies while utilizing waste heat for water heating applications only. Space 
heating energy is supplied by the grid powered heat pump while operated at a COP of 3.0. As can be seen, the primary 
energy efficiency with this cogeneration system is effectively higher when compared with the 60% electrical grid if 
the PM’s electrical efficiency is above 35%. 
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Figure 5: Electrical grid efficiency impact on primary energy efficiency and carbon footprint while utilizing a 0.5 
kW prime mover on site. 

Figure 6: Influence of 0.5 kW PM’s electrical energy efficiency on energy and environmental benefits compared to 
a 60% efficient electrical grid. 

The analysis presented so far assumes continuous operation of the prime mover in meeting the thermal and 
electrical energy demands of the building. A fuel cell (FC)-based cogeneration system fits such a criterion where 
continuous operation of the system improves reliability compared to intermittent operation.  

An internal combustion engine (ICE)-based cogeneration system offers similar advantages as discussed 
above. However, a cost-effective engine will have a higher electrical power rating compared to the nominal 0.25 to 1 
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kW power range assumed above. Hence, a 2 kW engine based cogeneration system with an electrical efficiency of 
30% was analyzed by considering varied operational hours per day, as shown in Figure 7. Excess electrical energy is 
produced if the cogeneration system operates for 12 hours per day while the carbon dioxide footprint decreases by 
greater than 35% compared to an electrical grid supply at 0.63 kg/kWh carbon intensity. The primary energy efficiency 
however is significantly higher compared to the assumed value of 33% for the electrical grid. 

Figure 7: Influence of daily operational hours of a 2 kW PM on carbon intensity and primary energy efficiency. 

The analysis was further extended for different configurations with and without cogeneration system and/or heat 
pump. As shown in Figure 2, two configurations are possible: (a) waste heat from the prime mover is used for water 
heating only and any excess thermal energy is unutilized or (b) all of the available waste heat from the PM is utilized 
for water heating and space heating (supplemented by a heat pump).  

Figure 8 displays the primary energy efficiency and carbon dioxide footprint of five different configurations 
including an all-electrical grid supply (33% efficient at 0.63 kg of CO2 per kWh electricity produced). The PM 
considered in this analysis assumed an electrical efficiency of 30% while the COP of the heat pump (if utilized) was 
assumed as 3.0. The second configuration involved a 0.25 kW cogeneration system where the waste heat was utilized 
for all thermal needs while supplemented by electrical grid (e.g. using resistive heating with 100% efficiency or COP 
of 1.0). The third configuration shown in the figure did not consider any cogeneration system, but all the thermal needs 
are met by a heat pump system. The fourth and the fifth configurations utilized all available waste heat from the PM 
while supplemented by an electrical heat pump. As can be noticed, the configuration with heat pump alone can increase 
the primary energy efficiency to 44%. A 0.5 kW PM supplemented by a heat pump can achieve a net primary energy 
efficiency of 51% while utilizing a 33% efficient electrical grid. 
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Figure 8: Influence of design configuration on primary energy efficiency and carbon dioxide footprint 

The impact of combining renewable PV with the cogeneration system was also analyzed by assuming an average of 
4.5 hours per day of solar PV utilization at its full potential. Case studies involving both fuel cell and ICE based 
cogeneration systems (PM efficiency of 30%) were conducted without heat pump in meeting the needs of a residential 
building consuming 25 kWh/day of total energy including 10 kWh/day of thermal energy. As shown in Figure 9, ICE 
based cogeneration system operating at different power ratings and operational hours per day in conjunction with 0.5 
kW PV can effectively decrease the primary energy consumption by greater than 55% while decreasing the carbon 
dioxide emissions by greater than 34%. Similarly, fuel cell-based configurations presented in Figure 10 can lead to 
significant reductions in primary energy and carbon dioxide emissions. For instance, a 0.5 kW FC cogeneration system 
along with 0.25 kW PV can decrease the primary energy consumption by greater than 70% while achieving 48% lower 
carbon dioxide emissions. 

Figure 9: ICE based cogeneration system along with PV: Influence of configuration on carbon footprint and 
primary energy 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-27, 2021 



 
 

 

  

 
 

       
 

 
 

 
              

              
        
           

           
            

         
           

            
            

              
           

                 
    

 
 

 
        
         

         
          

   
     
   

   
             

   
        
        

   
   

   

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
E-Grid 0.25 kW FC + 0.25 kW 0.5 kW FC + 0.25 kW 

PV PV 

CO2, ton/yr ■ Total Primary Energy, MWh 

 2296, Page 9 

Figure 10: : FC based cogeneration system along with PV: Influence of configuration on carbon footprint and 
primary energy 

6. CONCLUSIONS 

Implementation of hybrid power configurations in a cogeneration architecture consisting of prime movers such as fuel 
cells and internal combustion engines and their combinations with heat pumps and PV were studied for residential 
building applications. Different design parameters including the power rating, electrical efficiency, COP, and 
electrical grid efficiency were analyzed to identify the impact of such configurations on energy efficiency and 
environmental benefits. It has been shown that currently available technologies can significantly lower the GHG 
emissions while improving the primary energy efficiency. Such configurations have the capability to complement 
higher electrical grid efficiencies with lower carbon intensities while improving the energy resiliency and 
sustainability due to their compatibility with natural gas as well as gaseous and liquid renewable fuels. The benefits 
of higher primary energy efficiency and lower carbon intensities associated with a 30% efficient prime mover in an 
onsite cogeneration system diminishes as the grid’s electrical efficiency increases beyond 50%. However, if the 
electrical efficiency of the prime mover is maintained beyond 35%, the effective primary energy efficiency of the 
cogeneration system is always higher than the electrical grid efficiency. The combined primary energy efficiency of 
a cogeneration system consisting of a PM with electrical efficiency of 50% and in conjunction with a heat pump (COP 
of 3.0) serviced by 60% efficient electrical grid can reach ~ 80%. 

NOMENCLATURE 

ȠPS Efficiency of power generator (local power source) (%) 
Ƞgrid Efficiency of the electrical grid (%) 
PPS Capacity of power generator (kW) 
CO2,ton/yr Carbon dioxide emissions per year (metric ton) 
CHP Combined Heat and Power 
COP Coefficient of performance 
DER Distributed Energy Resource 
EIA Energy Information Agency 
HHVfuel Higher heating value of fuel (MJ/m3) 
kW Kilo-Watt 
kWhgrid Grid supplied energy to the building (kWh) 
kWhbldg Daily building energy demand (kWh) 
MJ Mega Joules 
PM Prime Mover 
PV Photo Voltaic 
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