1,337 research outputs found

    Accurate Ellipsometric Measurement of Refractive Index and Thickness of Ultrathin Oxide Film

    Get PDF
    This work presents some suggestions to improve the accuracy of ellipsometry for determining the refractive indices and thicknesses of ultrathin thermal SiO 2 films on silicon. The effects of substrate optical parameter variations on the ellipsometric measurement were ruled out by conducting the ellipsometric measurements in several different media instead of air. An improved ellipsometer adjustment procedure was developed to minimize the error for ⌿ and ⌬ angle measurement and to check the anisotropy of the sample. To extract the thickness and refractive index of ultrathin dielectric film from the light polarization parameters, an optimization technique with fluctuation of substrate parameter taken into account was proposed. Our results show that the refractive indices of ultrathin ͑2.1-8 nm͒ thermal oxide films prepared by several different methods fall in the range of 1.475 ± 0.003

    Microsomal prostaglandin E2 synthase-1 is induced by conditional expression of RET/PTC in thyroid PCCL3 cells through the activation of the MEK-ERK pathway

    Get PDF
    RET/PTC rearrangements are believed to be tumor-initiating events in papillary thyroid carcinomas. We identified microsomal prostaglandin E2 synthase-1 (mPGES-1) as a RET/PTC-inducible gene through subtraction hybridization cloning and expression profiling with custom microarrays. The inducible prostaglandin E2 (PGE2) biosynthetic enzymes cyclooxygenase-2 (COX-2) and mPGES-1 are up-regulated in many cancers. COX-2 is overexpressed in thyroid malignancies compared with benign nodules and normal thyroid tissues. Eicosanoids may promote tumorigenesis through effects on tumor cell growth, immune surveillance, and angiogenesis. Conditional RET/PTC1 or RET/PTC3 expression in PCCL3 thyroid cells markedly induced mPGES-1 and COX-2. PGE2 was the principal prostanoid and up-regulated (by approximately 60-fold), whereas hydroxyeicosatetraenoic acid metabolites were decreased, consistent with shunting of prostanoid biosynthesis toward PGE2 by coactivation of the two enzymes. RET/PTC activated mPGES-1 gene transcription. Based on experiments with kinase inhibitors, with PCCL3 cell lines with doxycycline-inducible expression of RET/PTC mutants with substitutions of critical tyrosine residues in the kinase domain, and lines with inducible expression of activated mutants of H-RAS and MEK1, RET/PTC was found to regulate mPGES-1 through Shc-RAS-MEK-ERK. These data show a direct relationship between activation of a tyrosine kinase receptor oncogene and regulation of PGE2 biosynthesis. As enzymes involved in prostanoid biosynthesis can be targeted with pharmacological inhibitors, these findings may have therapeutic implications

    Atomic and electronic structure of amorphous and crystalline hafnium oxide: X-ray photoelectron spectroscopy and density functional calculations

    Get PDF
    The atomic structure of amorphous and crystalline hafnium oxide Í‘HfO 2 Í’ films was examined using x-ray diffractometry and Hf edge x-ray absorption spectroscopy. According to the x-ray photoelectron spectroscopy and band data calculated by the density functional method, we found that the valence band of HfO 2 consists of three subbands separated by ionic gaps. The upper subband is formed by O 2p, Hf 4f, and Hf 5d states; the intermediate subband is formed by O 2s and Hf 4f states, whereas the lower narrow subband is mainly formed by Hf 5p states. The energy gap of amorphous HfO 2 is 5.7 eV as determined by electron energy loss spectroscopy. The band calculation results indicate the existence of light Í‘0.3m 0 Í’ and heavy Í‘8.3m 0 Í’ holes in the HfO 2 film and the effective mass of electron lies in the interval of 0.7m 0 -2.0m 0

    Long-term cost-effectiveness of digital inhaler adherence technologies in difficult-to-treat asthma

    Get PDF
    BACKGROUND: Digital inhalers can monitor inhaler usage, support difficult-to-treat asthma management and inform step-up treatment decisions yet their economic value is unknown, hampering wide-scale implementation.OBJECTIVE: We aimed to assess the long-term cost-effectiveness of digital inhaler-based medication adherence management in difficult-to-treat asthma.METHODS: A model-based cost-utility analysis was performed. The Markov model structure was determined by biological and clinical understanding of asthma and was further informed by guideline-based assessment of model development. Internal and external validation was performed using the AdViSHE tool. The INCA Sun randomized clinical trial data were incorporated into the model to evaluate the cost-effectiveness of digital inhalers. Several long-term clinical case scenarios were assessed (reduced number of exacerbations, increased asthma control, introduction of biosimilars [25% price-cut on biologics]).RESULTS: The long-term modelled cost-effectiveness based on a societal perspective indicated 1-year per-patient costs for digital inhalers and usual care (i.e., regular inhalers) of €7,546 and €10,752, respectively, reflecting cost savings of €3,207 for digital inhalers. Using a 10-year intervention duration and time horizon resulted incost savings of €26,309 for digital inhalers. In the first year, add-on biologic therapies accounted for 69% of the total costs in the usual care group, and for 49% in the digital inhaler group. Scenario analyses indicated consistent cost savings ranging from €2,287 (introduction biosimilars) to €4,581 (increased control, decreased exacerbations).CONCLUSION: In patients with difficult-to-treat asthma, digital inhaler based interventions can be cost-saving on the long-term by optimizing medication adherence and inhaler technique and reducing add-on biologic prescriptions.</p

    Long-term cost-effectiveness of digital inhaler adherence technologies in difficult-to-treat asthma

    Get PDF
    BACKGROUND: Digital inhalers can monitor inhaler usage, support difficult-to-treat asthma management and inform step-up treatment decisions yet their economic value is unknown, hampering wide-scale implementation.OBJECTIVE: We aimed to assess the long-term cost-effectiveness of digital inhaler-based medication adherence management in difficult-to-treat asthma.METHODS: A model-based cost-utility analysis was performed. The Markov model structure was determined by biological and clinical understanding of asthma and was further informed by guideline-based assessment of model development. Internal and external validation was performed using the AdViSHE tool. The INCA Sun randomized clinical trial data were incorporated into the model to evaluate the cost-effectiveness of digital inhalers. Several long-term clinical case scenarios were assessed (reduced number of exacerbations, increased asthma control, introduction of biosimilars [25% price-cut on biologics]).RESULTS: The long-term modelled cost-effectiveness based on a societal perspective indicated 1-year per-patient costs for digital inhalers and usual care (i.e., regular inhalers) of €7,546 and €10,752, respectively, reflecting cost savings of €3,207 for digital inhalers. Using a 10-year intervention duration and time horizon resulted incost savings of €26,309 for digital inhalers. In the first year, add-on biologic therapies accounted for 69% of the total costs in the usual care group, and for 49% in the digital inhaler group. Scenario analyses indicated consistent cost savings ranging from €2,287 (introduction biosimilars) to €4,581 (increased control, decreased exacerbations).CONCLUSION: In patients with difficult-to-treat asthma, digital inhaler based interventions can be cost-saving on the long-term by optimizing medication adherence and inhaler technique and reducing add-on biologic prescriptions.</p

    Long-term cost-effectiveness of digital inhaler adherence technologies in difficult-to-treat asthma

    Get PDF
    BACKGROUND: Digital inhalers can monitor inhaler usage, support difficult-to-treat asthma management and inform step-up treatment decisions yet their economic value is unknown, hampering wide-scale implementation.OBJECTIVE: We aimed to assess the long-term cost-effectiveness of digital inhaler-based medication adherence management in difficult-to-treat asthma.METHODS: A model-based cost-utility analysis was performed. The Markov model structure was determined by biological and clinical understanding of asthma and was further informed by guideline-based assessment of model development. Internal and external validation was performed using the AdViSHE tool. The INCA Sun randomized clinical trial data were incorporated into the model to evaluate the cost-effectiveness of digital inhalers. Several long-term clinical case scenarios were assessed (reduced number of exacerbations, increased asthma control, introduction of biosimilars [25% price-cut on biologics]).RESULTS: The long-term modelled cost-effectiveness based on a societal perspective indicated 1-year per-patient costs for digital inhalers and usual care (i.e., regular inhalers) of €7,546 and €10,752, respectively, reflecting cost savings of €3,207 for digital inhalers. Using a 10-year intervention duration and time horizon resulted incost savings of €26,309 for digital inhalers. In the first year, add-on biologic therapies accounted for 69% of the total costs in the usual care group, and for 49% in the digital inhaler group. Scenario analyses indicated consistent cost savings ranging from €2,287 (introduction biosimilars) to €4,581 (increased control, decreased exacerbations).CONCLUSION: In patients with difficult-to-treat asthma, digital inhaler based interventions can be cost-saving on the long-term by optimizing medication adherence and inhaler technique and reducing add-on biologic prescriptions.</p

    Long-term cost-effectiveness of digital inhaler adherence technologies in difficult-to-treat asthma

    Get PDF
    BACKGROUND: Digital inhalers can monitor inhaler usage, support difficult-to-treat asthma management and inform step-up treatment decisions yet their economic value is unknown, hampering wide-scale implementation.OBJECTIVE: We aimed to assess the long-term cost-effectiveness of digital inhaler-based medication adherence management in difficult-to-treat asthma.METHODS: A model-based cost-utility analysis was performed. The Markov model structure was determined by biological and clinical understanding of asthma and was further informed by guideline-based assessment of model development. Internal and external validation was performed using the AdViSHE tool. The INCA Sun randomized clinical trial data were incorporated into the model to evaluate the cost-effectiveness of digital inhalers. Several long-term clinical case scenarios were assessed (reduced number of exacerbations, increased asthma control, introduction of biosimilars [25% price-cut on biologics]).RESULTS: The long-term modelled cost-effectiveness based on a societal perspective indicated 1-year per-patient costs for digital inhalers and usual care (i.e., regular inhalers) of €7,546 and €10,752, respectively, reflecting cost savings of €3,207 for digital inhalers. Using a 10-year intervention duration and time horizon resulted incost savings of €26,309 for digital inhalers. In the first year, add-on biologic therapies accounted for 69% of the total costs in the usual care group, and for 49% in the digital inhaler group. Scenario analyses indicated consistent cost savings ranging from €2,287 (introduction biosimilars) to €4,581 (increased control, decreased exacerbations).CONCLUSION: In patients with difficult-to-treat asthma, digital inhaler based interventions can be cost-saving on the long-term by optimizing medication adherence and inhaler technique and reducing add-on biologic prescriptions.</p

    Long-term cost-effectiveness of digital inhaler adherence technologies in difficult-to-treat asthma

    Get PDF
    BACKGROUND: Digital inhalers can monitor inhaler usage, support difficult-to-treat asthma management and inform step-up treatment decisions yet their economic value is unknown, hampering wide-scale implementation.OBJECTIVE: We aimed to assess the long-term cost-effectiveness of digital inhaler-based medication adherence management in difficult-to-treat asthma.METHODS: A model-based cost-utility analysis was performed. The Markov model structure was determined by biological and clinical understanding of asthma and was further informed by guideline-based assessment of model development. Internal and external validation was performed using the AdViSHE tool. The INCA Sun randomized clinical trial data were incorporated into the model to evaluate the cost-effectiveness of digital inhalers. Several long-term clinical case scenarios were assessed (reduced number of exacerbations, increased asthma control, introduction of biosimilars [25% price-cut on biologics]).RESULTS: The long-term modelled cost-effectiveness based on a societal perspective indicated 1-year per-patient costs for digital inhalers and usual care (i.e., regular inhalers) of €7,546 and €10,752, respectively, reflecting cost savings of €3,207 for digital inhalers. Using a 10-year intervention duration and time horizon resulted incost savings of €26,309 for digital inhalers. In the first year, add-on biologic therapies accounted for 69% of the total costs in the usual care group, and for 49% in the digital inhaler group. Scenario analyses indicated consistent cost savings ranging from €2,287 (introduction biosimilars) to €4,581 (increased control, decreased exacerbations).CONCLUSION: In patients with difficult-to-treat asthma, digital inhaler based interventions can be cost-saving on the long-term by optimizing medication adherence and inhaler technique and reducing add-on biologic prescriptions.</p

    Long-term cost-effectiveness of digital inhaler adherence technologies in difficult-to-treat asthma

    Get PDF
    BACKGROUND: Digital inhalers can monitor inhaler usage, support difficult-to-treat asthma management and inform step-up treatment decisions yet their economic value is unknown, hampering wide-scale implementation.OBJECTIVE: We aimed to assess the long-term cost-effectiveness of digital inhaler-based medication adherence management in difficult-to-treat asthma.METHODS: A model-based cost-utility analysis was performed. The Markov model structure was determined by biological and clinical understanding of asthma and was further informed by guideline-based assessment of model development. Internal and external validation was performed using the AdViSHE tool. The INCA Sun randomized clinical trial data were incorporated into the model to evaluate the cost-effectiveness of digital inhalers. Several long-term clinical case scenarios were assessed (reduced number of exacerbations, increased asthma control, introduction of biosimilars [25% price-cut on biologics]).RESULTS: The long-term modelled cost-effectiveness based on a societal perspective indicated 1-year per-patient costs for digital inhalers and usual care (i.e., regular inhalers) of €7,546 and €10,752, respectively, reflecting cost savings of €3,207 for digital inhalers. Using a 10-year intervention duration and time horizon resulted incost savings of €26,309 for digital inhalers. In the first year, add-on biologic therapies accounted for 69% of the total costs in the usual care group, and for 49% in the digital inhaler group. Scenario analyses indicated consistent cost savings ranging from €2,287 (introduction biosimilars) to €4,581 (increased control, decreased exacerbations).CONCLUSION: In patients with difficult-to-treat asthma, digital inhaler based interventions can be cost-saving on the long-term by optimizing medication adherence and inhaler technique and reducing add-on biologic prescriptions.</p
    • …
    corecore