70 research outputs found

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation

    Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp

    Get PDF
    Two phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49 and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (32) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25% of EGM) achieving 18.67 U/g of lipolytic activity.Jose Manuel Salgado is grateful for Postdoctoral fellowship (EX-2010-0402) of Education Ministry of Spanish Government. Luis Abrunhosa was supported by the grant SFRH/BPD/43922/2008 from Fundacao para a Ciencia e Tecnologia-FCT, Portugal. Authors thank Fundacao para a Ciencia e a Tecnologia (FCT) for financial support through the project FCT Pest-OE/EQB/LA0023/2011

    Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The entomopathogenic fungi <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>have demonstrated effectiveness against anopheline larvae in the laboratory. However, utilising these fungi for the control of anopheline larvae under field conditions, relies on development of effective means of application as well as reducing their sensitivity to UV radiation, high temperatures and the inevitable contact with water. This study was conducted to develop formulations that facilitate the application of <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>spores for the control of anopheline larvae, and also improve their persistence under field conditions.</p> <p>Methods</p> <p>Laboratory bioassays were conducted to test the ability of aqueous (0.1% Tween 80), dry (organic and inorganic) and oil (mineral and synthetic) formulations to facilitate the spread of fungal spores over the water surface and improve the efficacy of formulated spores against anopheline larvae as well as improve spore survival after application. Field bioassays were then carried out to test the efficacy of the most promising formulation under field conditions in western Kenya.</p> <p>Results</p> <p>When formulated in a synthetic oil (ShellSol T), fungal spores of both <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>were easy to mix and apply to the water surface. This formulation was more effective against anopheline larvae than 0.1% Tween 80, dry powders or mineral oil formulations. ShellSol T also improved the persistence of fungal spores after application to the water. Under field conditions in Kenya, the percentage pupation of <it>An. gambiae </it>was significantly reduced by 39 - 50% by the ShellSol T-formulated <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>spores as compared to the effects of the application of unformulated spores.</p> <p>Conclusions</p> <p>ShellSol T is an effective carrier for fungal spores when targeting anopheline larvae under both laboratory and field conditions. Entomopathogenic fungi formulated with a suitable carrier are a promising tool for control of larval populations of malaria mosquitoes. Additional studies are required to identify the best delivery method (where, when and how) to make use of the entomopathogenic potential of these fungi against anopheline larvae.</p

    An incremental approach to automated protein localisation

    Get PDF
    Tscherepanow M, Jensen N, Kummert F. An incremental approach to automated protein localisation. BMC Bioinformatics. 2008;9(1): 445.Background: The subcellular localisation of proteins in intact living cells is an important means for gaining information about protein functions. Even dynamic processes can be captured, which can barely be predicted based on amino acid sequences. Besides increasing our knowledge about intracellular processes, this information facilitates the development of innovative therapies and new diagnostic methods. In order to perform such a localisation, the proteins under analysis are usually fused with a fluorescent protein. So, they can be observed by means of a fluorescence microscope and analysed. In recent years, several automated methods have been proposed for performing such analyses. Here, two different types of approaches can be distinguished: techniques which enable the recognition of a fixed set of protein locations and methods that identify new ones. To our knowledge, a combination of both approaches – i.e. a technique, which enables supervised learning using a known set of protein locations and is able to identify and incorporate new protein locations afterwards – has not been presented yet. Furthermore, associated problems, e.g. the recognition of cells to be analysed, have usually been neglected. Results: We introduce a novel approach to automated protein localisation in living cells. In contrast to well-known techniques, the protein localisation technique presented in this article aims at combining the two types of approaches described above: After an automatic identification of unknown protein locations, a potential user is enabled to incorporate them into the pre-trained system. An incremental neural network allows the classification of a fixed set of protein location as well as the detection, clustering and incorporation of additional patterns that occur during an experiment. Here, the proposed technique achieves promising results with respect to both tasks. In addition, the protein localisation procedure has been adapted to an existing cell recognition approach. Therefore, it is especially well-suited for high-throughput investigations where user interactions have to be avoided. Conclusion: We have shown that several aspects required for developing an automatic protein localisation technique – namely the recognition of cells, the classification of protein distribution patterns into a set of learnt protein locations, and the detection and learning of new locations – can be combined successfully. So, the proposed method constitutes a crucial step to render image-based protein localisation techniques amenable to large-scale experiments

    High Diversity of the Fungal Community Structure in Naturally-Occurring Ophiocordyceps sinensis

    Get PDF
    BACKGROUND: Ophiocordyceps sinensis (syn. Cordyceps sinensis), which is a parasite of caterpillars and is endemic to alpine regions on the Tibetan Plateau, is one of the most valuable medicinal fungi in the world. "Natural O. sinensis specimens" harbor various other fungi. Several of these other fungi that have been isolated from natural O. sinensis specimens have similar chemical components and/or pharmaceutical effects as O. sinensis. Nevertheless, the mycobiota of natural O. sinensis specimens has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: Based on the technique of PCR-single-strand conformation polymorphism (PCR-SSCP), the mycobiota of three different sections (stromata, sclerotia, and mycelial cortices) from natural O. sinensis specimens were investigated using both culture-dependent and -independent methods. For the culture-dependent method, 572 fungal strains were isolated, and 92 putative operational taxonomic units (OTUs) were identified from 226 sequenced strains with the threshold of 97%. For the culture-independent method, 490 fungal clones were identified from about 3000 clones of ITS fragments from the whole-community DNA; based on PCR-SSCP analyses, 266 of these clones were selected to be sequenced, and 118 putative OTUs were detected. The overwhelming majority of isolates/clones and OTUs were detected from mycelial cortices; only a few were detected from stromata and sclerotia. The most common OTUs detected with both methods belonged to Ascomycota; however, only 13 OTUs were detected simultaneously by both methods. Potential novel lineages were detected by each of the two methods. CONCLUSIONS/SIGNIFICANCE: A great number of fungal species present in the mycobiota of naturally-occurring O. sinensis specimens were detected, and many of them may represent undescribed lineages. That only a few of the same OTUs were detected by both methods indicated that different methods should be used. This study increased our understanding about the fungal community structure of this valuable medicinal herb

    Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    Get PDF
    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti

    Tripping on Acid: Trans-Kingdom Perspectives on Biological Acids in Immunity and Pathogenesis

    Get PDF
    corecore