2,894 research outputs found

    Hub loads analysis of the SA349/2 helicopter

    Get PDF
    The forces and moments at the rotor hub of an Aerospatiale SA349/2 helicopter were investigated. The study included three main topics. First, measured hub forces and moments for a range of level flight conditions (mu = 0.14 to 0.37) were compared with predictions from a comprehensive rotorcraft analysis to examine the influence of the wake model on the correlations. Second, the effect of changing the blade mass distribution and blade chordwise center of gravity location on the 3/rev nonrotating frame hub loads was studied for a high-speed flight condition (mu = 0.37). Third, the use of higher harmonic control to reduce nonrotating frame 3/rev hub shear forces was investigated. The last two topics were theoretical studies only

    Smile4life:The oral health of homeless people across Scotland

    Get PDF

    Discovery and Assessment of New Target Sites for Anti-HIV Therapies

    Get PDF
    Human immunodeficiency virus (HIV) infects cells by endocytosis and takes over parts of the cell’s reaction pathways in order to reproduce itself and spread the infection. One such pathway taken over by HIV becomes the inflammatory pathway which uses Nuclear Factor κB (NF-κB) as the principal transcription factor. Therefore, knocking out the NF-κB pathway would prevent HIV from reproducing itself. In this report, our goal is to produce a simple model for this pathway with which we can identify potential targets for anti-HIV therapies and test out various hypotheses. We present a very simple model with four coupled first-order ODEs and see what happens if we treat IκK concentration as a parameter that can be controlled (by some unspecified means). In Section 3, we augment this model to account for activation and deactivation of IκK, which is controlled (again, by some unspecified means) by TNF

    Wing force and surface pressure data from a hover test of a 0.658-scale V-22 rotor and wing

    Get PDF
    A hover test of a 0.658-scale V-22 rotor and wing was conducted in the 40 x 80 foot wind tunnel at Ames Research Center. The principal objective of the test was to measure the surface pressures and total download on a large scale V-22 wing in hover. The test configuration consisted of a single rotor and semispan wing on independent balance systems. A large image plane was used to represent the aircraft plane of symmetry. Wing flap angles ranging from 45 to 90 degrees were examined. Data were acquired for both directions of the rotor rotation relative to the wing. Steady and unsteady wing surface pressures, total wing forces, and rotor performance data are presented for all of the configurations that were tested

    Surgical Infection Society Guidelines for Vaccination after Traumatic Injury

    Get PDF
    Background: Recommendations for vaccination of injured patients against infection are evolving. Newly-recognized infections, safety considerations, changing epidemiology, and redefinition of patient groups at risk are factors that may influence vaccine development priorities and recommendations for immunization. However, recommendations must often be formulated based on incomplete data, forcing reliance on expert opinion to address some crucial questions. These guidelines provide evidence-based recommendations for the prevention or treatment of infectious morbidity and mortality after traumatic injury, such as soft tissue wounds, human or animal bites, or after splenectomy. Methods: A panel of experts conducted a thorough review of published literature, as well as information posted on the internet at the websites of the U.S. Centers for Disease Control and Prevention, among others. MEDLINE was searched for the period 1966–2004 using relevant terms including anthrax, rabies, tetanus, tetanus toxoid, and splenectomy, in combination with vaccine and immunization. The Cochrane database was searched also. Reference lists were cross-referenced for additional relevant citations. All published reports were analyzed for quality and graded, with the strength of the recommendation proportionate to the quality of the supporting evidence. Results: Recommendations are provided for pre- and post-exposure prophylaxis of rabies and anthrax. For tetanus prophylaxis, recommendations are provided for prophylaxis of acute wounds stratified y age and prior immunization status, and for immunization of persons at high risk. After splenectomy, it is recommended that all persons ages 2–64 years receive 23- valent pneumococcal vaccine and meningococcal vaccine, with Haemophilus influenzae type B vaccine administered to high-risk patients as well (all are Grade D recommendations). Vaccination should be given two weeks before elective splenectomy (Grade C), or two weeks after emergency splenectomy (Grade D). A booster dose of pneumococcal vaccine is recommended after five years (Grade D); no re- vaccination recommendation is made for meningococcal or Haemophilus influenzae type B vaccine. Recommendations for prophylaxis of splenectomized children under the age of five years are also provided. Conclusion: There are limited data on the use of vaccines after injury. This document brings together a disparate literature of variable quality into a discussion of the infectious risks after injury relevant to vaccine administration, a summary of safety and adverse effects of vaccines, and evidence-based recommendations for vaccination

    Gram - positive and gram - negative subcellular localization using rotation forest and physicochemical-based features

    Get PDF
    The functioning of a protein relies on its location in the cell. Therefore, predicting protein subcellular localization is an important step towards protein function prediction. Recent studies have shown that relying on Gene Ontology (GO) for feature extraction can improve the prediction performance. However, for newly sequenced proteins, the GO is not available. Therefore, for these cases, the prediction performance of GO based methods degrade significantly. Results: In this study, we develop a method to effectively employ physicochemical and evolutionary-based information in the protein sequence. To do this, we propose segmentation based feature extraction method to explore potential discriminatory information based on physicochemical properties of the amino acids to tackle Gram-positive and Gram-negative subcellular localization. We explore our proposed feature extraction techniques using 10 attributes that have been experimentally selected among a wide range of physicochemical attributes. Finally by applying the Rotation Forest classification technique to our extracted features, we enhance Gram-positive and Gram-negative subcellular localization accuracies up to 3.4% better than previous studies which used GO for feature extraction. Conclusion: By proposing segmentation based feature extraction method to explore potential discriminatory information based on physicochemical properties of the amino acids as well as using Rotation Forest classification technique, we are able to enhance the Gram-positive and Gram-negative subcellular localization prediction accuracies, significantly

    Advancing the accuracy of protein fold recognition by utilizing profiles from hidden Markov models

    Get PDF
    Protein fold recognition is an important step towards solving protein function and tertiary structure prediction problems. Among a wide range of approaches proposed to solve this problem, pattern recognition based techniques have achieved the best results. The most effective pattern recognition-based techniques for solving this problem have been based on extracting evolutionary-based features. Most studies have relied on thePosition Specific Scoring Matrix (PSSM) to extract these features. However it is known that profile-profile sequence alignment techniques can identify more remote homologs than sequence-profile approaches like PSIBLAST. In this study we use a profile-profile sequence alignment technique, namely HHblits, to extract HMM profiles.We will show that unlike previous studies, using the HMM profile to extract evolutionary information can significantly enhance the protein fold prediction accuracy. We develop a new pattern recognition based system called HMMFold which extracts HMM based evolutionary information and captures remote homology information better than previous studies. Using HMMFold we achieve up to 93.8% and 86.0% prediction accuracies when the sequential similarity rates are less than 40% and 25%, respectively. These results are up to 10% better than previously reported results for this task. Our results show significant enhancement especially for benchmarks with sequential similarity as low as 25% which highlights the effectiveness of HMMFold to address this problem and its superiority over previously proposed approaches found in the literature
    corecore