63 research outputs found
Standardized methods for enhanced quality and comparability of tuberculous meningitis studies
Tuberculous meningitis remains a major cause of death and disability in tuberculosis endemic areas, especially in young children and immunocompromised adults. Research aimed at improving outcomes is hampered by poor standardization, which limits study comparison and the generalizability of results. We propose standardized methods for the conduct of tuberculous meningitis clinical research that were drafted at an international tuberculous meningitis research meeting organized by the Oxford University Clinical Research Unit in Vietnam. We propose a core dataset including demographic and clinical information to be collected at study enrolment, important aspects related to patient management and monitoring, and standardized reporting of patient outcomes. The criteria proposed for the conduct of observational and intervention tuberculous meningitis studies should improve the quality of future research outputs, facilitate multi-centre studies and meta-analyses of pooled data, and could provide the foundation for a global tuberculous meningitis data repository
Circulating levels of insulin-like growth factor-I (IGF-I) correlate with disease status in leprosy
<p>Abstract</p> <p>Background</p> <p>Caused by <it>Mycobacterium leprae </it>(ML), leprosy presents a strong immune-inflammatory component, whose status dictates both the clinical form of the disease and the occurrence of reactional episodes. Evidence has shown that, during the immune-inflammatory response to infection, the growth hormone/insulin-like growth factor-I (GH/IGF-I) plays a prominent regulatory role. However, in leprosy, little, if anything, is known about the interaction between the immune and neuroendocrine systems.</p> <p>Methods</p> <p>In the present retrospective study, we measured the serum levels of IGF-I and IGBP-3, its major binding protein. These measurements were taken at diagnosis in nonreactional borderline tuberculoid (NR BT), borderline lepromatous (NR BL), and lepromatous (NR LL) leprosy patients in addition to healthy controls (HC). LL and BL patients who developed reaction during the course of the disease were also included in the study. The serum levels of IGF-I, IGFBP-3 and tumor necrosis factor-alpha (TNF-Ξ±) were evaluated at diagnosis and during development of reversal (RR) or erythema nodosum leprosum (ENL) reaction by the solid phase, enzyme-labeled, chemiluminescent-immunometric method.</p> <p>Results</p> <p>The circulating IGF-I/IGFBP-3 levels showed significant differences according to disease status and occurrence of reactional episodes. At the time of leprosy diagnosis, significantly lower levels of circulating IGF-I/IGFBP-3 were found in NR BL and NR LL patients in contrast to NR BT patients and HCs. However, after treatment, serum IGF-I levels in BL/LL patients returned to normal. Notably, the levels of circulating IGF-I at diagnosis were low in 75% of patients who did not undergo ENL during treatment (NR LL patients) in opposition to the normal levels observed in those who suffered ENL during treatment (R LL patients). Nonetheless, during ENL episodes, the levels observed in RLL sera tended to decrease, attaining similar levels to those found in NR LL patients. Interestingly, IGF-I behaved contrary to what was observed during RR episodes in R BL patients.</p> <p>Conclusions</p> <p>Our data revealed important alterations in the IGF system in relation to the status of the host immune-inflammatory response to ML while at the same time pointing to the circulating IGF-I/IGFBP-3 levels as possible predictive biomarkers for ENL in LL patients at diagnosis.</p
Cross-Reactivity of Herpesvirus-Specific CD8 T Cell Lines Toward Allogeneic Class I MHC Molecules
Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495β503/A*0201, BMLF1259β267/A*0201, or BZLF154β64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-Ξ± production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-Ξ± production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection
Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class Iβrestricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms
Two Host Factors Regulate Persistence of H7a-Specific T Cells Injected in Tumor-Bearing Mice
BACKGROUND: Injection of CD8 T cells primed against immunodominant minor histocompatibility antigens (MiHA) such as H7(a) can eradicate leukemia and solid tumors. To understand why MiHA-targeted T cells have such a potent antitumor effect it is essential to evaluate their in vivo behavior. In the present work, we therefore addressed two specific questions: what is the proliferative dynamics of H7(a)-specifc T cells in tumors, and do H7(a)-specific T cells persist long-term after adoptive transfer? METHODOLOGY/PRINCIPAL FINDINGS: By day 3 after adoptive transfer, we observed a selective infiltration of melanomas by anti-H7(a) T cells. Over the next five days, anti-H7(a) T cells expanded massively in the tumor but not in the spleen. Thus, by day 8 after injection, anti-H7(a) T cells in the tumor had undergone more cell divisions than those in the spleen. These data strongly suggest that anti-H7(a) T cells proliferate preferentially and extensively in the tumors. We also found that two host factors regulated long-term persistence of anti-H7(a) memory T cells: thymic function and expression of H7(a) by host cells. On day 100, anti-H7(a) memory T cells were abundant in euthymic H7(a)-negative (B10.H7(b)) mice, present in low numbers in thymectomized H7(a)-positive (B10) hosts, and undetectable in euthymic H7(a)-positive recipients. CONCLUSIONS/SIGNIFICANCE: Although in general the tumor environment is not propitious to T-cell invasion and expansion, the present work shows that this limitation may be overcome by adoptive transfer of primed CD8 T cells targeted to an immunodominant MiHA (here H7(a)). At least in some cases, prolonged persistence of adoptively transferred T cells may be valuable for prevention of late cancer relapse in adoptive hosts. Our findings therefore suggest that it may be advantageous to target MiHAs with a restricted tissue distribution in order to promote persistence of memory T cells and thereby minimize the risk of cancer recurrence
Clinical Outcomes of Patients With Drug-Resistant Tuberculous Meningitis Treated With an Intensified Antituberculosis Regimen
Background. Drug-resistant tuberculous meningitis (TBM) is difficult to diagnose and treat. Mortality is high and optimal treatment is unknown. We compared clinical outcomes of drug-resistant and -susceptible TBM treated with either standard or intensified antituberculosis treatment. Methods. We analyzed the influence of Mycobacterium tuberculosis drug resistance on the outcomes of patients with TBM enrolled into a randomized controlled trial comparing a standard, 9-month antituberculosis regimen (containing rifampicin 10 mg/kg/day) with an intensified regimen with higher-dose rifampicin (15 mg/kg/day) and levofloxacin (20 mg/kg/day) for the first 8 weeks. The primary endpoint of the trial was 9-month survival. In this subgroup analysis, resistance categories were predefined as multidrug resistant (MDR), isoniazid resistant, rifampicin susceptible (INH-R), and susceptible to rifampicin and isoniazid (INH-S + RIF-S). Outcome by resistance categories and response to intensified treatment were compared and estimated by Cox regression. Results. Of 817 randomized patients, 322 had a known drug resistance profile. INH-R was found in 86 (26.7%) patients, MDR in 15 (4.7%) patients, rifampicin monoresistance in 1 patient (0.3%), and INH-S + RIF-S in 220 (68.3%) patients. Multivariable regression showed that MDR (hazard ratio [HR], 5.91 [95% confidence interval {CI}, 3.00β11.6]), P < .001), was an independent predictor of death. INH-R had a significant association with the combined outcome of new neurological events or death (HR, 1.58 [95% CI, 1.11β2.23]). Adjusted Cox regression, corrected for treatment adjustments, showed that intensified treatment was significantly associated with improved survival (HR, 0.34 [95% CI, .15β.76], P = .01) in INH-R TBM. Conclusions. Early intensified treatment improved survival in patients with INH-R TBM. Targeted regimens for drug-resistant TBM should be further explored
Clinical Outcomes of Patients With Drug-Resistant Tuberculous Meningitis Treated With an Intensified Antituberculosis Regimen
Background.
Drug-resistant tuberculous meningitis (TBM) is difficult to diagnose and treat. Mortality is high and optimal treatment is unknown. We compared clinical outcomes of drug-resistant and -susceptible TBM treated with either standard or intensified antituberculosis treatment.
Methods.
We analyzed the influence of Mycobacterium tuberculosis drug resistance on the outcomes of patients with TBM enrolled into a randomized controlled trial comparing a standard, 9-month antituberculosis regimen (containing rifampicin 10 mg/kg/day) with an intensified regimen with higher-dose rifampicin (15 mg/kg/day) and levofloxacin (20 mg/kg/day) for the first 8 weeks. The primary endpoint of the trial was 9-month survival. In this subgroup analysis, resistance categories were predefined as multidrug resistant (MDR), isoniazid resistant, rifampicin susceptible (INH-R), and susceptible to rifampicin and isoniazid (INH-S + RIF-S). Outcome by resistance categories and response to intensified treatment were compared and estimated by Cox regression.
Results.
Of 817 randomized patients, 322 had a known drug resistance profile. INH-R was found in 86 (26.7%) patients, MDR in 15 (4.7%) patients, rifampicin monoresistance in 1 patient (0.3%), and INH-S + RIF-S in 220 (68.3%) patients. Multivariable regression showed that MDR (hazard ratio [HR], 5.91 [95% confidence interval {CI}, 3.00β11.6]), P
Conclusions.
Early intensified treatment improved survival in patients with INH-R TBM. Targeted regimens for drug-resistant TBM should be further explored
- β¦