95 research outputs found

    Sizable suppression of magnon Hall effect by magnon damping in Cr2_2Ge2_2Te6_6

    Full text link
    Two-dimensional (2D) Heisenberg honeycomb ferromagnets are expected to have interesting topological magnon effects as their magnon dispersion can have Dirac points. The Dirac points are gapped with finite second nearest neighbor Dzyaloshinskii-Moriya interaction, providing nontrivial Berry curvature with finite magnon Hall effect. Yet, it is unknown how the topological properties are affected by magnon damping. We report the thermal Hall effect in Cr2_2Ge2_2Te6_6, an insulating 2D honeycomb ferromagnet with a large Dirac magnon gap and significant magnon damping. Interestingly, the thermal Hall conductivity in Cr2_2Ge2_2Te6_6 shows the coexisting phonon and magnon contributions. Using an empirical two-component model, we successfully estimate the magnon contribution separate from the phonon part, revealing that the magnon Hall conductivity was 20 times smaller than the theoretical calculation. Finally, we suggest that such considerable suppression in the magnon Hall conductivity is due to the magnon damping effect in Cr2_2Ge2_2Te6_6.Comment: 15 pages, 3 figures. Accepted for publication in Phys. Rev.

    Axion Haloscope Using an 18 T High Temperature Superconducting Magnet

    Full text link
    We report details on the axion dark matter search experiment that uses the innovative technologies of a High-Temperature Superconducting (HTS) magnet and a Josephson Parametric Converter (JPC). An 18 T HTS solenoid magnet is developed for this experiment. The JPC is used as the first stage amplifier to achieve a near quantum-limited low-noise condition. The first dark matter axion search was performed with the 18 T axion haloscope. The scan frequency range is from 4.7789 GHz to 4.8094 GHz (30.5 MHz range). No significant signal consistent with Galactic dark matter axion is observed. Our results set the best limit of the axion-photon-photon coupling (gaγγg_{a\gamma\gamma}) in the axion mass range of 19.764 to 19.890 μ\mueV. Using the Bayesian method, the upper bounds of gaγγg_{a\gamma\gamma} are set at 0.98×gaγγKSVZ\times|g_{a\gamma\gamma}^{\text{KSVZ}}| (1.11×gaγγKSVZ\times|g_{a\gamma\gamma}^{\text{KSVZ}}|) in the mass ranges of 19.764 to 19.771 μ\mueV (19.863 to 19.890 μ\mueV), and at 1.76 ×gaγγKSVZ\times|g_{a\gamma\gamma}^{\text{KSVZ}}| in the mass ranges of 19.772 to 19.863 μ\mueV with 90\% confidence level, respectively. We report design, construction, operation, and data analysis of the 18 T axion haloscope experiment.Comment: PRD published versio

    Graphene-passivated nickel as an oxidation-resistant electrode for spintronics.

    Get PDF
    We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.R.S.W. acknowledges funding from EPSRC (Doctoral training award). S.H. acknowledges funding from ERC Grant InsituNANO (Project Reference 279342). P.S. acknowledges the Institut Universitaire de France for junior fellowship support. This research was partially supported by the EU FP7 work programme under Grant GRAFOL (Project Reference 285275).This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn304424x

    Recent Progress in Synaptic Devices Based on Two‐Dimensional Materials

    No full text
    Diverse synaptic plasticity with a wide range of timescales in biological synapses plays an important role in memory, learning, and various signal processing with exceptionally low power consumption. Emulating biological synaptic functions by electric devices for neuromorphic computation has been consideredas a way to overcome the traditional von Neumann architecture in which separated memory and information processing units require high power consumption for their functions. Synaptic devices are expected to conduct complex signal processing such as image classification, decision‐making, and pattern recognition in artificial neural networks. Among various materials and device architectures for synaptic devices, 2D materials and their van der Waals (vdW) heterostructures have been attracting tremendous attention from researchers based on their capacity to mimic unique synaptic plasticity for neuromorphic computing. Herein, the basic operations of biological synapses and physical properties of 2D materials are discussed, and then 2D materials and their vdW heterostructures for advanced synaptic operations with novel working mechanisms are reviewed. In particular, there is a focus on how to design synaptic devices with the vdW structures in terms of critical 2D materials and their limitations, providing insight into the emerging synaptic device systems and artificial neural networks with 2D materials
    corecore