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We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. 

GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct 

coating of nickel with few layer graphene through a readily scalable chemical vapour 

deposition (CVD) process allows the preservation of an unoxidized nickel surface upon 

air exposure. Fabrication and measurement of complete reference tunneling spin valve 

structures demonstrates that the GPFE is maintained as a spin polarizer and also that 

the presence of the graphene coating leads to a specific sign reversal of the magneto-

resistance. Hence, this work highlights a novel oxidation-resistant spin source which 

further unlocks low cost wet chemistry processes for spintronics devices. 

 

Information storage is today mainly based on magnetism, with hundreds of millions of hard 

drives sold every year,
1,2

 and further growth is expected driven by the proliferation of 

enormous data centers for online “cloud” computing. Spintronics is at the heart of this non-

volatile data-storage revolution, with ferromagnetic memory elements acting as basic 

building blocks: spin sources or analyzers. The efficiency of spin polarized electrodes, based 

on ferromagnetic metals like nickel and cobalt, thereby heavily relies on the quality of the 

interfaces at play. A major challenge for device processing and integration is to prevent 

detrimental corrosion and oxidation of the ferromagnetic metals in use. To date, this severely 
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limits the use of ambient and low cost wet processing steps and the integration of novel 

materials like organic molecules and chemically derived nanostructures in spintronics. 

Here we present a simple, scalable process to fabricate oxidation-resistant spin polarized 

electrodes that we anticipate can open up a range of new integrative pathways for spin 

devices. Our process uses the ferromagnetic metal, here Ni, as catalyst for the low 

temperature chemical vapour deposition (CVD) of graphene layers.
3-5

 The CVD process 

ensures the reduction of the Ni surface and the resulting graphene coating acts as an oxidation 

passivation. Importantly this graphene passivated ferromagnetic electrode (GPFE) preserves a 

spin polarization for electrons flowing perpendicularly through it. We characterize the GPFE 

by in-situ X-ray photoelectron spectroscopy (XPS). Furthermore, we identify a particular 

filtering of majority spins by the GPFE, through magneto-transport measurements of a 

complete tunneling spin valve structure which reveal a negative magneto-resistance MR = -

10.8%. Graphene has already been identified as a promising material for current-

perpendicular-to-plane (CPP) spintronics devices, but previous studies relied on graphene 

exfoliation
6,7

 or transfer
8
 and hence could not utilize the gas impermeability of the graphene 

layers.
9,10

 We establish here a process technology for the direct integration of graphene in to 

spintronics devices, that fully makes use of this key advantage of graphene. 

 

RESULTS AND DISCUSSION 

Figure 1 shows the principle of our process and the device lay-out. Lithographically 

defined Ni stripes on SiO2/Si support are exposed to a hydrocarbon in a one-step CVD 

process at 600°C. This results in a selective, conformal coating of the Ni with few layer 

graphene (FLG ~ 2-5 layers). We previously reported 
5,11

 on all details of low temperature, Ni 

catalyzed graphene CVD and the related growth mechanisms. Importantly, the graphene layer 

is thus directly grown on the structure without the need for the usual transfer steps involved 

in the fabrication of CVD graphene devices,
8
 and the process is readily scalable. 

As highlighted earlier, the passivation of the nickel surface is crucial as, once exposed to 

ambient air, a bare nickel surface is immediately oxidized. Hence, depositing graphene on an 

air exposed nickel electrode by exfoliation of graphite or by transfer of CVD grown graphene 

may lead to an undesired and ill-defined Ni/NiOx/graphene electrode, where the NiOx layer 

acts on its own as a tunnel barrier with a poorly defined effect on spin properties.
12,13

 We 

therefore use in-situ X-ray photoelectron spectroscopy (XPS) measurements to confirm that 

our approach of direct graphene CVD on nickel at 600 °C results in an oxide-free GPFE. 

Ni2p3/2 core level spectra were acquired at several stages of the CVD process, and following 

an extended exposure to air after the CVD process (Fig. 2). Prior to annealing, the measured 

Ni2p3/2 spectrum of the surface of the as-deposited Ni layer is characteristic of oxidized Ni 

(Fig. 2, top spectrum). After heating to 300 °C in a H2 atmosphere, the XPS oxide peaks are 

completely removed and the peaks at 852.6 eV (NiM) and 853.0 eV (NiDis) become dominant 

(Fig. 2, middle spectrum), as expected for oxide-free metallic Ni.
5,11

 The observation of this 

characteristic metallic Ni spectrum confirms that the Ni surface is completely reduced during 

the annealing step of the CVD process. The temperature is further raised to 600 °C (without 

significant change in the XPS spectra) and the FLG is then grown by CVD (see methods). 

After cooling, the graphene-passivated Ni sample is transferred in ambient air in order to 

proceed to following lithographic steps. To emphasize the protection effect of the graphene 
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layer, a reference sample was produced and left exposed to ambient atmosphere for 7 days. 

The subsequent XPS measurements of the the Ni2p3/2 core level (Fig. 2, bottom spectrum) 

shows that the NiM and NiDis components are still dominant and no further peaks have 

emerged (i.e. the spectra features are unchanged from the in-situ spectra after reduction) 

indicating that Ni remains reduced even after extended exposure to air. We note the intensity 

of the lower spectrum is much less than for the other spectra, as a result of the Ni being 

covered with FLG. While pristine monolayer graphene acts as an impermeable membrane 

even to He,
9
 the presence of defects in the sp

2
 structure may be thought to provide paths for 

gas diffusion. However, the CVD process in use here (see methods) leads to a self-

terminating FLG film which acts as an effective oxygen diffusion barrier under ambient 

conditions as shown by XPS, and thus protects the GPFE from oxidation. 

To characterize the electronic transport properties of the GPFE, a graphene-nickel stripe is 

contacted with a reference Al2O3/Co probe structure (Fig. 1b). To achieve this, first a 1 µm × 

1 µm square is opened in a resist above the graphene coated Ni stripe. The Al2O3(1 

nm)/Co(15 nm)/Au top contact structure is then produced by sputtering. In particular the 

Al2O3 layer is deposited in two steps: a 0.6 nm Al layer is sputtered, and is then further 

oxidized in 50 Torr O2 atmosphere leading to a homogenous 1 nm Al2O3 film on graphene.
14

 

The resulting structure is composed of the GPFE with the spin polarized tunneling current 

probe on top over a 1 µm
2
 area (Fig. 1b). 

Figures 3 and 4 present the characterization of the GPFE/probe electrical properties at 

1.4K. The measured resistance × area product of the structure is in the MΩ.µm
2
 range. This is 

in agreement with previous characterization of the sputtered 1 nm Al2O3 tunnel barrier on 

graphene.
14

 dI/dV spectroscopy characterization of the junction is carried with an AC+DC 

lock-in based measurement setup. The dI/dV tunneling spectrum presented in Fig. 3a reveals 

a ~120 meV wide gap-like feature at the Fermi level (EF). This gap is a characteristic 

signature of electrons tunneling into graphene, as revealed previously in STM studies for 

graphene on SiC,
15

 SiO2,
16

 BN,
17

  and Pt,
18

 and described by ab-initio calculation of the 

tunnelling density of states.
19

 Indeed, at low bias (< 60 mV), only elastic tunneling paths are 

enabled near the graphene’s K points at EF. Due to the particular band structure of graphene 

this leads to a quenching of the injected current (Fig. 3b) due to a   vector mismatch: the 

current in graphene is carried by electron’s having non-zero in-plane momentum,    , while 

the distribution of tunneling probabilities through our 1 nm Al2O3 tunneling layer is 

maximum for    = 0 and presents an exponential decay with increasing    as shown in 

STM-tip/graphene measurements.
15-19

 This is emphasized in our measurements by the fact 

that when energies ascribed to out-of-plane acoustic graphene phonon mode  at ≈ 60 meV are 

reached, 
15-19

 additional inelastic tunneling paths are activated and the current rises. The 

suppression of the tunneling for small biases and the identification of the phonon-mediated 

inelastic tunneling channels in the dI/dV spectroscopy further show, in addition to XPS 

measurements, that the transport occurs as expected in a well-defined Ni/graphene/Al2O3/Co 

structure. 

Figure 4 presents magneto-dependent measurements through the junction. While both spin 

polarizations of Co/Al2O3 and Ni/Al2O3 interfaces are known to be positive 
20,21

 and hence 

lead to  positive magneto-resistance signals in Ni/Al2O3/Co structures 
22,23

 (see Fig. 5a), a 

negative magneto-resistance is observed in our system due to the simple insertion of the 

graphene layer between the Ni electrode and the Al2O3 tunnel barrier. Following De Teresa et 
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al.
24

 and taking the definition    
      

   
 

           

           
, we find           in our 

system (Fig. 4a) from which we derive for the nickel-GPFE a large negative spin 

polarization, PGPFE = -16% (see Ref. 
25

), by assuming PSP = +32% for the Co/Al2O3 spin 

probe. This estimation of PGPFE is thus a lower bound of the spin polarization amplitude as 

we take the maximum value of PSP extracted from previous devices.
14,26,27

 While spin 

polarizations reported for electron tunneling from Ni/Al2O3 electrode are positive in complete 

TMR structures 
22,23

 as well as in ferromagnet/insulator/superconductor tunneling 

structures,
20,21

 we observe a drastic evolution of the spin polarization which notably leads to a 

sign reversal of the Ni spin polarization at the GPFE. We consistently observed negative 

magnetoresitance signals (-5% to -10%) among different runs and positive magnetoresistance 

was never observed. 

This shows that as conceptually expected for molecules 
28

 and as predicted from ab-initio 

calculations for the GPFE,
29

 the sole presence of the graphene passivation layer is able to 

induce a spin filtering effect and the reversal of the spin polarization. This result can be 

simply understood in terms of filtering of Ni majority spins by graphene. Indeed, when 

comparing the Fermi surface of graphene to the one of nickel, it appears that at graphene’s K 

points nickel presents only minority spin electrons:
29

 minority spins thus have a continuous 

transport channel through the GPFE, while majority spins have no direct conduction path and 

are filtered out (Fig. 5b).  

 

CONCLUSION 

In conclusion, we show that spin polarized ferromagnetic electrodes can be successfully 

passivated against oxidation by the growth of graphene by CVD. This is especially interesting 

when targeting organic-based spintronics devices where oxidation and other chemical 

reactions occurring at interfaces could quench spin signals. The potential of GPFEs for 

organic-based electronics has also been previously highlighted by the observed radical 

enhancement of the wetting ability of metal/graphene systems 
30

 which is envisioned to also 

assist their coating with organic molecules like pentacene or phthalocyanines.
31,32

 

Furthermore, experimental evidence presented here confirms that a particular spin-filtering 

effect takes place at the GPFE, with the graphene layer shown to drastically modify the spin 

polarization properties of a ferromagnetic metal, leading to spin polarization reversal. The 

growth of high-quality CVD graphene on Ni based catalysts at CMOS-compatible 

temperatures (< 450 °C) has been previously demonstrated
11

 and thus the direct incorporation 

of GPFE spin filters in integrated spintronics devices can be envisioned. Finally, the 

presented results in this paper highlight a possible path to the all-spin logic device described 

by Behin-Aein et al.,
33

 using graphene as a global platform for spin processing architectures, 

where it could both translate magnetically stored information from nickel dot registers into 

the corresponding electron’s spin polarization, and further transport this spin information 

with a high efficiency.
14
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METHODS 

The GPFE geometry (Figure 1a) was defined by ebeam lithography using Shipley’s UVIII 

resist on a SiO2(300nm)/Si substrate. A 10 µm wide stripe was opened in the resist, a 150 nm 

thick nickel layer was then deposited by evaporation and a standard lift-off step was carried. 

Following previous reports,
5,11

 the nickel was then covered with graphene through a chemical 

vapour deposition growth step in a custom-built cold-wall reactor whose base pressure is 

5×10
-7

 mbar. The sample was heated up to 600°C at about 300 °C/min and annealed in a 1 

mbar atmosphere of H2 for 15 minutes. The H2 was removed and then the sample was 

exposed to a 10
-5

 mbar atmosphere of C2H2 at 600°C for 15 minutes. Finally, the sample was 

cooled in vacuum at ~100 °C/min. This leads to complete coverage of nickel by a FLG film. 

No significant increase in average layer number is observed for longer exposure times. We 

attribute this self-terminating growth to the grown layers blocking the precursor supply to the 

Ni catalyst.
5
 

The spin probe analyzer electrode geometry was defined in a second ebeam step. A 1 µm x 

1 µm window was opened in UVIII resist on top of the GPFE. The stack was then deposited 

by sputtering, through a shadow mask which protected bonding pads. First, a 0.6 nm thick 

layer of aluminum was sputtered by DC plasma, followed by exposure to a 50 Torr O2 

atmosphere for 10 minutes. A 15 nm cobalt layer was then sputtered on top and capped by a 

80 nm gold layer. The spin properties of this spin probe have previously been studied 
14,26,27

 

with a maximum measured spin polarization of PSP=+32%. 

In situ XPS measurements revealing the reduction and the passivation of the nickel layer 

during low-pressure CVD were performed at the BESSY II synchrotron at the ISISS end 

station of the FHI-MPG. An IR laser focused onto a SiC backplate was used for sample 

heating. Temperature readings were taken from a thermocouple clamped to the sample 

surface close to the measured region, and as such, this may lead to an uncertainty in the 

actual sample temperature of ~50 °C. 
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FIGURES CAPTIONS 

 

Figure 1. (a) Optical image of the device after graphene growth: a Ni stripe is coated with 

CVD graphene and a Al2O3/Co electrode is then deposited on lithographed 1 µm × 1 µm 

squares in UV resist. (b) Cross-sectional schematic of the junction 

 

Figure 2. Fitted X-ray photoelectron spectra (XPS) of the nickel surface. Top XPS spectrum 

is characteristic of oxidized as-deposited nickel once exposed to air. Middle XPS spectrum 

reveals a reduced Ni surface after in-situ 300 °C treatment. Bottom XPS spectrum confirms 

the protection of the Ni surface by the CVD grown graphene layer: the preserved metallic 

nature of the nickel surface is probed through the graphene layer, even after a 7 days 

exposure to air. 

 

Figure 3. (a) Tunnel spectroscopy of the Co/Al2O3/Graphene/Ni junction (2 sweeps). The 

observed ≈ 120 meV gap-like feature and the phonon-mediated activation of tunneling at 

larger biases are characteristic of electron tunneling perpendicularly to a graphene layer. 

Inset: non-linear I(V) trace. (b) Tunneling of k= = 0 and k= = K electrons are both impeded at 

low biases. 

 

Figure 4. Spin transport through the Ni/graphene/Al2O3/Co junction at 1.4K (a) A negative 

magnetoresistance MR = -10.8% is measured (applied DC bias 100 mV). (b) 

Magnetoresistance measured at -100 mV.  

 

Figure 5. (a) A positive spin signal is expected in Ni/Al2O3/Co structures as reported in 
22,23

. 

(b) Here, the measured negative spin signal is understood in terms of filtering of majority 

spins by the GPFE. 
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