1,945 research outputs found

    Stimulated Emission from Rhodamine 6G Aggregates Self-Assembled on Amyloid Protein Fibrils

    Get PDF
    Amyloid fibrils are excellent bioderived nanotemplates for controlling molecular and optical properties of small molecules such as organic dyes. Here we demonstrate that two representative fibril-forming proteins, lysozyme and insulin, from the amyloids family can determine the optical signature of rhodamine 6G. Their structural variety leads to a unique molecular arrangement of dye aggregates on the biotemplate surface. This significantly influences the light amplification threshold as well as the stimulated emission profiles, which show remarkable broadband wavelength tunability. We show in addition that amyloid fibrils can be potentially used in constructing broadband emission biolasers

    The low-temperature energy calibration system for the CUORE bolometer array

    Full text link
    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into a unique cryostat, this requires careful design and unconventional solutions. We present the design, challenges, and expected performance of this low-temperature energy calibration system.Comment: To be published in the proceedings of the 13th International Workshop on Low Temperature Detectors (LTD), Stanford, CA, July 20-24, 200

    Stripe phases in high-temperature superconductors

    Full text link
    Stripe phases are predicted and observed to occur in a class of strongly-correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representative. The existence of stripe correlations necessitates the development of new principles for describing charge transport, and especially superconductivity, in these materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl. Acad. Sci. US

    Status of Neutrino Masses and Mixing and Future Perspectives

    Get PDF
    Status of the problem of neutrino masses, mixing and oscillations is discussed. Future perspectives are briefly considered.Comment: Report at the conference IRGAC 2006, Barcelona July 11-15 200

    Knight Shift Anomalies in Heavy Electron Materials

    Full text link
    We calculate non-linear Knight Shift KK vs. susceptibility χ\chi anomalies for Ce ions possessing local moments in metals. The ions are modeled with the Anderson Hamiltonian and studied within the non-crossing approximation (NCA). The Kvs.χK-vs.- \chi non-linearity diminishes with decreasing Kondo temperature T0T_0 and nuclear spin- local moment separation. Treating the Ce ions as an incoherent array in CeSn3_3, we find excellent agreement with the observed Sn K(T)K(T) data.Comment: 4 pages, Revtex, 3 figures available upon request from [email protected]

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO3_3

    Get PDF
    The microscopic description of the spin-Peierls transition in pure and doped CuGeO_3 is developed taking into account realistic details of crystal structure. It it shown that the presence of side-groups (here Ge) strongly influences superexchange along Cu-O-Cu path, making it antiferromagnetic. Nearest-neighbour and next-nearest neighbour exchange constants JnnJ_{nn} and JnnnJ_{nnn} are calculated. Si doping effectively segments the CuO_2-chains leading to Jnn(Si)0J_{nn}(Si)\simeq0 or even slightly ferromagnetic. Strong sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be responsible for the spin-Peierls transition itself (``bond-bending mechanism'' of the transition). The nature of excitations in the isolated and coupled spin-Peierls chains is studied and it is shown that topological excitations (solitons) play crucial role. Such solitons appear in particular in doped systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the TSP(x)T_{SP}(x) phase diagram.Comment: 7 pages, revtex, 7 Postscript figure

    Electron-phonon interaction in ultrasmall-radius carbon nanotubes

    Full text link
    We perform analysis of the band structure, phonon dispersion, and electron-phonon interactions in three types of small-radius carbon nanotubes. We find that the (5,5) can be described well by the zone-folding method and the electron-phonon interaction is too small to support either a charge-density wave or superconductivity at realistic temperatures. For ultra-small (5,0) and (6,0) nanotubes we find that the large curvature makes these tubes metallic with a large density of states at the Fermi energy and leads to unusual electron-phonon interactions, with the dominant coupling coming from the out-of-plane phonon modes. By combining the frozen-phonon approximation with the RPA analysis of the giant Kohn anomaly in 1d we find parameters of the effective Fr\"{o}lich Hamiltonian for the conduction electrons. Neglecting Coulomb interactions, we find that the (5,5) CNT remains stable to instabilities of the Fermi surface down to very low temperatures while for the (5,0) and (6,0) CNTs a CDW instability will occur. When we include a realistic model of Coulomb interaction we find that the charge-density wave remains dominant in the (6,0) CNT with TCDWT_{\rm CDW} around 5 K while the charge-density wave instability is suppressed to very low temperatures in the (5,0) CNT, making superconductivity dominant with transition temperature around one Kelvin.Comment: 20 pages. Updated 7/23/0

    Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As- and (Ga,Be)As-based electric field-effect devices

    Full text link
    We have fabricated electric double-layer field-effect devices to electrostatically dope our active materials, either xx=0.015 Ga1x_{1-x}Mnx_xAs or xx=3.2×104\times10^{-4} Ga1x_{1-x}Bex_xAs. The devices are tailored for interrogation of electric field induced changes to the frequency dependent conductivity in the accumulation or depletions layers of the active material via infrared (IR) spectroscopy. The spectra of the (Ga,Be)As-based device reveal electric field induced changes to the IR conductivity consistent with an enhancement or reduction of the Drude response in the accumulation and depletion polarities, respectively. The spectroscopic features of this device are all indicative of metallic conduction within the GaAs host valence band (VB). For the (Ga,Mn)As-based device, the spectra show enhancement of the far-IR itinerant carrier response and broad mid-IR resonance upon hole accumulation, with a decrease of these features in the depletion polarity. These later spectral features demonstrate that conduction in ferromagnetic (FM) Ga1x_{1-x}Mnx_xAs is distinct from genuine metallic behavior due to extended states in the host VB. Furthermore, these data support the notion that a Mn-induced impurity band plays a vital role in the electron dynamics of FM Ga1x_{1-x}Mnx_xAs. We add, a sum-rule analysis of the spectra of our devices suggests that the Mn or Be doping does not lead to a substantial renormalization of the GaAs host VB

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl
    corecore