81 research outputs found

    Development of reaching to the body in early infancy: From experiments to robotic models

    Get PDF
    We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting “sensorimotor contingencies” linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor cortices—the homunculi—as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the “somatosensory homunculi”. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models

    Development of reaching to the body in early infancy: From experiments to robotic models

    Get PDF
    We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting “sensorimotor contingencies” linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor cortices—the homunculi—as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the “somatosensory homunculi”. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models

    Alpha-band oscillations reflect external spatial coding for tactile stimuli in sighted, but not in congenitally blind humans

    Get PDF
    We investigated the function of oscillatory alpha-band activity in the neural coding of spatial information during tactile processing. Sighted humans concurrently encode tactile location in skin-based and, after integration with posture, external spatial reference frames, whereas congenitally blind humans preferably use skin-based coding. Accordingly, lateralization of alpha-band activity in parietal regions during attentional orienting in expectance of tactile stimulation reflected external spatial coding in sighted, but skin-based coding in blind humans. Here, we asked whether alpha-band activity plays a similar role in spatial coding for tactile processing, that is, after the stimulus has been received. Sighted and congenitally blind participants were cued to attend to one hand in order to detect rare tactile deviant stimuli at this hand while ignoring tactile deviants at the other hand and tactile standard stimuli at both hands. The reference frames encoded by oscillatory activity during tactile processing were probed by adopting either an uncrossed or crossed hand posture. In sighted participants, attended relative to unattended standard stimuli suppressed the power in the alpha-band over ipsilateral centro-parietal and occipital cortex. Hand crossing attenuated this attentional modulation predominantly over ipsilateral posterior-parietal cortex. In contrast, although contralateral alpha-activity was enhanced for attended versus unattended stimuli in blind participants, no crossing effects were evident in the oscillatory activity of this group. These findings suggest that oscillatory alpha-band activity plays a pivotal role in the neural coding of external spatial information for touch

    Hands behind your back: effects of arm posture on tactile attention in the space behind the body

    Get PDF
    Previous research has shown that tactile-spatial information originating from the front of the body is remapped from an anatomical to an external-spatial coordinate system, guided by the availability of visual information early in development. Comparably little is known about regions of space for which visual information is not typically available, such as the space behind the body. This study tests for the first time the electrophysiological correlates of the effects of proprioceptive information on tactile-attentional mechanisms in the space behind the back. Observers were blindfolded and tactually cued to detect infrequent tactile targets on either their left or right hand and to respond to them either vocally or with index finger movements. We measured event-related potentials (ERPs) to tactile probes on the hands in order to explore tactile-spatial attention when the hands were either held close together or far apart behind the observer's back. Results show systematic effects of arm posture on tactile-spatial attention different from those previously found for front space. While attentional selection is typically more effective for hands placed far apart than close together in front space, we found that selection occurred more rapidly for close than far hands behind the back, during both covert attention and movement preparation tasks. This suggests that proprioceptive space may ‘wrap’ around the body, following the hands as they extend horizontally from the front body midline to the centre of the back

    Male-Specific Transfer and Fine Scale Spatial Differences of Newly Identified Cuticular Hydrocarbons and Triacylglycerides in a Drosophila Species Pair

    Get PDF
    We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species

    Implications of Action-Oriented Paradigm Shifts in Cognitive Science

    Get PDF
    An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g., educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system

    Phenetic distances in the Drosophila melanogaster-subgroup species and oviposition-site preference for food components

    Get PDF
    Oviposition-site preferences (O.S.P.) have been investigated in females of six sibling species of the Drosophila melanogaster subgroup. O.S.P. were determined for standard food components and yeast genotypes. Females of all species showed a strong preference for complete medium and avoidance of pure agar as an egg-deposition site.\ud \ud Ecological trees of the species on the basis of rank correlations were constructed. In ‘no-choice’ situations they agree with phylogenetic trees obtained by different means but in ‘choice’ situations they do not agree too well.\ud \ud All species showed a high egg production on live yeast compared with standard medium (with killed yeast) and D. erecta females demonstrated discrimination between yeast genotypes. Niche breadth calculated from survival on the sterol mutant yeasts correlated fairly well with phylogenetic trees

    Spatiotemporal processing of somatosensory stimuli in schizotypy

    Get PDF
    Unusual interaction behaviors and perceptual aberrations, like those occurring in schizotypy and schizophrenia, may in part originate from impaired remapping of environmental stimuli in the body space. Such remapping is contributed by the integration of tactile and proprioceptive information about current body posture with other exteroceptive spatial information. Surprisingly, no study has investigated whether alterations in such remapping occur in psychosis-prone individuals. Four hundred eleven students were screened with respect to schizotypal traits using the Schizotypal Personality Questionnaire. A subgroup of them, classified as low, moderate, and high schizotypes were to perform a temporal order judgment task of tactile stimuli delivered on their hands, with both uncrossed and crossed arms. Results revealed marked differences in touch remapping in the high schizotypes as compared to low and moderate schizotypes. For the first time here we reveal that the remapping of environmental stimuli in the body space, an essential function to demarcate the boundaries between self and external world, is altered in schizotypy. Results are discussed in relation to recent models of 'self-disorders' as due to perceptual incoherence

    How does it feel to act together?

    Get PDF
    This paper on the phenomenology of joint agency proposes a foray into a little explored territory at the intersection of two very active domains of research: joint action and sense of agency. I explore two ways in which our experience of joint agency may differ from our experience of individual agency. First, the mechanisms of action specification and control involved in joint action are typically more complex than those present in individual actions, since it is crucial for joint action that people coordinate their plans and actions. I discuss the implications that these coordination requirements might have for the strength of the sense of agency an agent may experience for a joint action. Second, engagement in joint action may involve a transformation of agentive identity and a partial or complete shift from a sense of self-agency to a sense of we-agency. I discuss several factors that may contribute to shaping our sense of agentive identity in joint action
    corecore