147 research outputs found

    Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults

    Get PDF
    Schubert JTW, Badde S, Röder B, Heed T. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults. PLOS ONE. 2017;12(12): e0189067.Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically (“palm” or “back” of the hand), or externally (“up” or “down” in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top-down information—here, task instruction—even in the absence of developmental vision

    Functional versus effector-specific organization of the human posterior parietal cortex: revisited

    Get PDF
    Heed T, Leone FTM, Toni I, Medendorp WP. Functional versus effector-specific organization of the human posterior parietal cortex: revisited. Journal of Neurophysiology. 2016;116(4):1885-1899

    Prior movement of one arm facilitates motor adaptation in the other

    Get PDF
    Many movements in daily life are embedded in motion sequences that involve more than one limb, demanding the motor system to monitor and control different body parts in quick succession. During such movements, systematic changes in the environment or the body might require motor adaptation of specific segments. However, previous motor adaptation research has focused primarily on motion sequences produced by a single limb, or on simultaneous movements of several limbs. For example, adaptation to opposing force fields is possible in unimanual reaching tasks when the direction of a prior or subsequent movement is predictive of force field direction. It is unclear, however, whether multi-limb sequences can support motor adaptation processes in a similar way. In the present study, we investigated whether reaches can be adapted to different force fields in a bimanual motor sequence when the information about the perturbation is associated with the prior movement direction of the other arm. In addition, we examined whether prior perceptual (visual or proprioceptive) feedback of the opposite arm contributes to force field-specific motor adaptation. Our key finding is that only active participation in the bimanual sequential task supports pronounced adaptation. This result suggests that active segments in bimanual motion sequences are linked across limbs. If there is a consistent association between movement kinematics of the linked and goal movement, the learning process of the goal movement can be facilitated. More generally, if motion sequences are repeated often, prior segments can evoke specific adjustments of subsequent movements

    Hands behind your back: effects of arm posture on tactile attention in the space behind the body

    Get PDF
    Previous research has shown that tactile-spatial information originating from the front of the body is remapped from an anatomical to an external-spatial coordinate system, guided by the availability of visual information early in development. Comparably little is known about regions of space for which visual information is not typically available, such as the space behind the body. This study tests for the first time the electrophysiological correlates of the effects of proprioceptive information on tactile-attentional mechanisms in the space behind the back. Observers were blindfolded and tactually cued to detect infrequent tactile targets on either their left or right hand and to respond to them either vocally or with index finger movements. We measured event-related potentials (ERPs) to tactile probes on the hands in order to explore tactile-spatial attention when the hands were either held close together or far apart behind the observer's back. Results show systematic effects of arm posture on tactile-spatial attention different from those previously found for front space. While attentional selection is typically more effective for hands placed far apart than close together in front space, we found that selection occurred more rapidly for close than far hands behind the back, during both covert attention and movement preparation tasks. This suggests that proprioceptive space may ‘wrap’ around the body, following the hands as they extend horizontally from the front body midline to the centre of the back

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Alpha-band oscillations reflect external spatial coding for tactile stimuli in sighted, but not in congenitally blind humans

    Get PDF
    We investigated the function of oscillatory alpha-band activity in the neural coding of spatial information during tactile processing. Sighted humans concurrently encode tactile location in skin-based and, after integration with posture, external spatial reference frames, whereas congenitally blind humans preferably use skin-based coding. Accordingly, lateralization of alpha-band activity in parietal regions during attentional orienting in expectance of tactile stimulation reflected external spatial coding in sighted, but skin-based coding in blind humans. Here, we asked whether alpha-band activity plays a similar role in spatial coding for tactile processing, that is, after the stimulus has been received. Sighted and congenitally blind participants were cued to attend to one hand in order to detect rare tactile deviant stimuli at this hand while ignoring tactile deviants at the other hand and tactile standard stimuli at both hands. The reference frames encoded by oscillatory activity during tactile processing were probed by adopting either an uncrossed or crossed hand posture. In sighted participants, attended relative to unattended standard stimuli suppressed the power in the alpha-band over ipsilateral centro-parietal and occipital cortex. Hand crossing attenuated this attentional modulation predominantly over ipsilateral posterior-parietal cortex. In contrast, although contralateral alpha-activity was enhanced for attended versus unattended stimuli in blind participants, no crossing effects were evident in the oscillatory activity of this group. These findings suggest that oscillatory alpha-band activity plays a pivotal role in the neural coding of external spatial information for touch

    Male-Specific Transfer and Fine Scale Spatial Differences of Newly Identified Cuticular Hydrocarbons and Triacylglycerides in a Drosophila Species Pair

    Get PDF
    We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species

    Spatiotemporal processing of somatosensory stimuli in schizotypy

    Get PDF
    Unusual interaction behaviors and perceptual aberrations, like those occurring in schizotypy and schizophrenia, may in part originate from impaired remapping of environmental stimuli in the body space. Such remapping is contributed by the integration of tactile and proprioceptive information about current body posture with other exteroceptive spatial information. Surprisingly, no study has investigated whether alterations in such remapping occur in psychosis-prone individuals. Four hundred eleven students were screened with respect to schizotypal traits using the Schizotypal Personality Questionnaire. A subgroup of them, classified as low, moderate, and high schizotypes were to perform a temporal order judgment task of tactile stimuli delivered on their hands, with both uncrossed and crossed arms. Results revealed marked differences in touch remapping in the high schizotypes as compared to low and moderate schizotypes. For the first time here we reveal that the remapping of environmental stimuli in the body space, an essential function to demarcate the boundaries between self and external world, is altered in schizotypy. Results are discussed in relation to recent models of 'self-disorders' as due to perceptual incoherence

    Phenetic distances in the Drosophila melanogaster-subgroup species and oviposition-site preference for food components

    Get PDF
    Oviposition-site preferences (O.S.P.) have been investigated in females of six sibling species of the Drosophila melanogaster subgroup. O.S.P. were determined for standard food components and yeast genotypes. Females of all species showed a strong preference for complete medium and avoidance of pure agar as an egg-deposition site.\ud \ud Ecological trees of the species on the basis of rank correlations were constructed. In ‘no-choice’ situations they agree with phylogenetic trees obtained by different means but in ‘choice’ situations they do not agree too well.\ud \ud All species showed a high egg production on live yeast compared with standard medium (with killed yeast) and D. erecta females demonstrated discrimination between yeast genotypes. Niche breadth calculated from survival on the sterol mutant yeasts correlated fairly well with phylogenetic trees
    corecore