3,452 research outputs found

    Calculations of the interactions of energetic ions with materials for protection of computer memory and biological systems

    Get PDF
    Theoretical calculations were performed for the propagation and interactions of particles having high atomic numbers and energy through diverse shield materials including polymeric materials and epoxy-bound lunar regolith by using transport codes for laboratory ion beams and the cosmic ray spectrum. Heavy ions fragment and lose energy upon interactions with shielding materials of specified elemental composition, density, and thickness. A fragmenting heavy iron ion produces hundreds of isotopes during nuclear reactions, which are treated in the solution of the transport problem used here. A reduced set of 80 isotopes is sufficient to represent the charge distribution, but a minimum of 122 isotopes is necessary for the mass distribution. These isotopes are adequate for ion beams with charges equal to or less than 26. to predict the single event upset (SEU) rate in electronic devices, the resultant linear energy transfer (LET) spectra from the transport code behind various materials are coupled with a measured SEU cross section versus LET curve. The SEU rate on static random access memory (SRAM) is shown as a function of shield thickness for various materials. For a given mass the most effective shields for SEU reduction are materials with high hydrogen density, such as polyethylene. The shield effectiveness for protection of biological systems is examined by using conventional quality factors to calculate the dose equivalents and also by using the probability of the neoplastic transformation of shielded C3H10T1/2 mouse cells. The attenuation of biological effects within the shield and body tissues depends on the materials properties. The results predict that hydrogenous materials are good candidates for high-performance shields. Two biological models were used. Quantitative results depended upon model

    Space Radiation Cancer Risks and Uncertainities for Different Mission Time Periods

    Get PDF
    Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which includes high energy protons and high charge and energy (HZE) nuclei. For long duration missions, space radiation presents significant health risks including cancer mortality. Probabilistic risk assessment (PRA) is essential for radiation protection of crews on long term space missions outside of the protection of the Earth s magnetic field and for optimization of mission planning and costs. For the assessment of organ dosimetric quantities and cancer risks, the particle spectra at each critical body organs must be characterized. In implementing a PRA approach, a statistical model of SPE fluence was developed, because the individual SPE occurrences themselves are random in nature while the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. An overall cumulative probability of a GCR environment for a specified mission period was estimated for the temporal characterization of the GCR environment represented by the deceleration potential (theta). Finally, this probabilistic approach to space radiation cancer risk was coupled with a model of the radiobiological factors and uncertainties in projecting cancer risks. Probabilities of fatal cancer risk and 95% confidence intervals will be reported for various periods of space missions

    Probalistic Assessment of Radiation Risk for Solar Particle Events

    Get PDF
    For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (~90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work

    Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements

    Get PDF
    The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GCR measurements is used by deep space mission planners for the certification of microelectronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n - 20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determined the GCR flux at a given time applying an emperical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized more than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried outward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so emperical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its performance will be presented

    Density functional calculations of the electronic structure and magnetic properties of the hydrocarbon K3picene superconductor near the metal-insulator transition

    Get PDF
    We have investigated the electronic structures and magnetic properties of of K3picene, which is a first hydrocarbon superconductor with high transition temperature T_c=18K. We have shown that the metal-insulator transition (MIT) is driven in K3picene by 5% volume enhancement with a formation of local magnetic moment. Active bands for superconductivity near the Fermi level E_F are found to have hybridized character of LUMO and LUMO+1 picene molecular orbitals. Fermi surfaces of K3picene manifest neither prominent nesting feature nor marked two-dimensional behavior. By estimating the ratio of the Coulomb interaction U and the band width W of the active bands near E_F, U/W, we have demonstrated that K3picene is located in the vicinity of the Mott transition.Comment: 5 pages, 5 figure

    Cancer Risk Map for the Surface of Mars

    Get PDF
    We discuss calculations of the median and 95th percentile cancer risks on the surface of Mars for different solar conditions. The NASA Space Radiation Cancer Risk 2010 model is used to estimate gender and age specific cancer incidence and mortality risks for astronauts exploring Mars. Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated using the HZETRN/QMSFRG computer code, and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. In the transport of particles through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution is implemented to describe the spherically distributed atmospheric distance along the slant path at each elevation on Mars. The resultant directional shielding by Mars atmosphere at each elevation is coupled with vehicle and body shielding for organ dose estimates. Astronaut cancer risks are mapped on the global topography of Mars, which was measured by the Mars Orbiter Laser Altimeter. Variation of cancer risk on the surface of Mars is due to a 16-km elevation range, and the large difference is obtained between the Tharsis Montes (Ascraeus, Pavonis, and Arsia) and the Hellas impact basin. Cancer incidence risks are found to be about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for all astronauts and breast cancer risk for female astronauts. The number of safe days on Mars to be below radiation limits at the 95th percent confidence level is reported for several Mission design scenarios

    Ensemble averageability in network spectra

    Full text link
    The extreme eigenvalues of connectivity matrices govern the influence of the network structure on a number of network dynamical processes. A fundamental open question is whether the eigenvalues of large networks are well represented by ensemble averages. Here we investigate this question explicitly and validate the concept of ensemble averageability in random scale-free networks by showing that the ensemble distributions of extreme eigenvalues converge to peaked distributions as the system size increases. We discuss the significance of this result using synchronization and epidemic spreading as example processes.Comment: 4 pages, 4 figure

    Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    Get PDF
    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator
    corecore