103 research outputs found

    Organic solvents and MS susceptibility Interaction with MS risk HLA genes

    Get PDF
    Objective We hypothesize that different sources of lung irritation may contribute to elicit an immune reaction in the lungs and subsequently lead to multiple sclerosis (MS) in people with a genetic susceptibility to the disease. We aimed to investigate the influence of exposure to organic solvents on MS risk, and a potential interaction between organic solvents and MS risk human leukocyte antigen (HLA) genes. Methods Using a Swedish population-based case-control study (2,042 incident cases of MS and 2,947 controls), participants with different genotypes, smoking habits, and exposures to organic solvents were compared regarding occurrence of MS, by calculating odds ratios with 95% confidence intervals using logistic regression. A potential interaction between exposure to organic solvents and MS risk HLA genes was evaluated by calculating the attributable proportion due to interaction. Results Overall, exposure to organic solvents increased the risk of MS (odds ratio 1.5, 95% confidence interval 1.2–1.8, p = 0.0004). Among both ever and never smokers, an interaction between organic solvents, carriage of HLA-DRB1*15, and absence of HLA-A*02 was observed with regard to MS risk, similar to the previously reported gene-environment interaction involving the same MS risk HLA genes and smoke exposure. Conclusion The mechanism linking both smoking and exposure to organic solvents to MS risk may involve lung inflammation with a proinflammatory profile. Their interaction with MS risk HLA genes argues for an action of these environmental factors on adaptive immunity, perhaps through activation of autoaggressive cells resident in the lungs subsequently attacking the CNS

    A Combinatorial Approach to Detect Coevolved Amino Acid Networks in Protein Families of Variable Divergence

    Get PDF
    Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence

    Importance of Human Leukocyte Antigen (HLA) Class I and II Alleles on the Risk of Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a complex disease of the central nervous system of unknown etiology. The human leukocyte antigen (HLA) locus on chromosome 6 confers a considerable part of the susceptibility to MS, and the most important factor is the class II allele HLA-DRB1*15:01. In addition, we and others have previously established a protective effect of HLA-A*02. Here, we genotyped 1,784 patients and 1,660 healthy controls from Scandinavia for the HLA-A, HLA-B, HLA-C and HLA-DRB1 genes and investigated their effects on MS risk by logistic regression. Several allele groups were found to exert effects independently of DRB1*15 and A*02, in particular DRB1*01 (OR = 0.82, p = 0.034) and B*12 (including B*44/45, OR = 0.76, p = 0.0028), confirming previous reports. Furthermore, we observed interaction between allele groups: DRB1*15 and DRB1*01 (multiplicative: OR = 0.54, p = 0.0041; additive: AP = 0.47, p = 4×10−06), DRB1*15 and C*12 (multiplicative: OR = 0.37, p = 0.00035; additive: AP = 0.58, p = 2.6×10−05), indicating that the effect size of these allele groups varies when taking DRB1*15 into account. Analysis of inferred haplotypes showed that almost all DRB1*15 bearing haplotypes were risk haplotypes, and that all A*02 bearing haplotypes were protective as long as they did not carry DRB1*15. In contrast, we found one class I haplotype, carrying A*02-C*05-B*12, which abolished the risk of DRB1*15. In conclusion, these results confirms a complex role of HLA class I and II genes that goes beyond DRB1*15 and A*02, in particular by including all three classical HLA class I genes as well as functional interactions between DRB1*15 and several alleles of DRB1 and class I genes

    HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13

    Get PDF
    Background: We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD less than= 2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings: Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, pless than9.8x10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (pless than0.002, pless than0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions: We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both

    Apyrase treatment of myocardial infarction according to a clinically applicable protocol fails to reduce myocardial injury in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ectonucleotidase dependent adenosine generation has been implicated in preconditioning related cardioprotection against ischemia-reperfusion injury, and treatment with a soluble ectonucleotidase has been shown to reduce myocardial infarct size (IS) when applied prior to induction of ischemia. However, ectonucleotidase treatment according to a clinically applicable protocol, with administration only after induction of ischemia, has not previously been evaluated. We therefore investigated if treatment with the ectonucleotidase apyrase, according to a clinically applicable protocol, would reduce IS and microvascular obstruction (MO) in a large animal model.</p> <p>Methods</p> <p>A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min, in 16 anesthetized pigs (40-50 kg). The pigs were randomized to 40 min of 1 ml/min intracoronary infusion of apyrase (10 U/ml, n = 8) or saline (0.9 mg/ml, n = 8), twenty minutes after balloon inflation. Area at risk (AAR) was evaluated by <it>ex vivo </it>SPECT. IS and MO were evaluated by <it>ex vivo </it>MRI.</p> <p>Results</p> <p>No differences were observed between the apyrase group and saline group with respect to IS/AAR (75.7 ± 4.2% vs 69.4 ± 5.0%, p = NS) or MO (10.7 ± 4.8% vs 11.4 ± 4.8%, p = NS), but apyrase prolonged the post-ischemic reactive hyperemia.</p> <p>Conclusion</p> <p>Apyrase treatment according to a clinically applicable protocol, with administration of apyrase after induction of ischemia, does not reduce myocardial infarct size or microvascular obstruction.</p

    Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis

    Get PDF
    Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89-174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE
    corecore