18 research outputs found

    Protein-energy malnutrition and worse outcomes after major cancer surgery: A nationwide analysis

    Get PDF
    BackgroundProtein-energy malnutrition (PEM) has been recognized as a poor prognostic factor in many clinical issues. However, nationwide population studies concerning the impact of PEM on outcomes after major cancer surgery (MCS) are lacking. We aimed to evaluate the postoperative outcomes associated with PEM following MCS.MethodsBy using the Nationwide Inpatient Sample database, data of patients undergoing MCS including colectomy, cystectomy, esophagectomy, gastrectomy, hysterectomy, lung resection, pancreatectomy, or prostatectomy were analyzed retrospectively from 2009 to 2015, resulting in a weighted estimate of 1,335,681 patients. The prevalence trend of PEM, as well as mortality and major complications after MCS were calculated. Multivariable regression analysis was applied to estimate the impact of PEM on postoperative outcomes after MCS.ResultsPEM showed an estimated annual percentage increase of 7.17% (95% confidence interval (CI): 4-10.44%) from 2009 to 2015, which contrasts with a 4.52% (95% CI: -6.58–2.41%) and 1.21% (95% CI: -1.85–0.56%) annual decrease in mortality and major complications in patients with PEM after MCS. PEM was associated with increased risk of mortality (odds ratio (OR)=2.26; 95% CI: 2.08-2.44; P < 0.0001), major complications (OR=2.46; 95% CI: 2.36-2.56; P < 0.0001), higher total cost (35814[35814 [22292, 59579]vs.59579] vs. 16825 [11393,11393, 24164], P < 0.0001), and longer length of stay (14 [9-21] days vs. 4 [2-7] days, P < 0.0001), especially in patients underwent prostatectomy, hysterectomy and lung resection.ConclusionsPEM was associated with increased worse outcomes after major cancer surgery. Early identification and timely medical treatment of PEM for patients with cancer are crucial for improving postoperative outcomes

    Dietary fiber intake and reduced risk of ovarian cancer: a meta-analysis

    No full text
    Abstract Background Epidemiological studies regarding the association between dietary fiber intake and ovarian cancer risk are still inconsistent. We aimed to review the available evidence and conduct a dose-response meta-analysis to investigate the relationship between dietary fiber intake and ovarian cancer risk. Methods Relevant studies were identified by searching PubMed, EMBASE, and the Cochrane Library databases before August 2017. Studies that reported relative risk (RR) estimates with 95% confidence intervals (CIs) for the association between dietary fiber intake and risk of ovarian cancer were included. Random-effects models were used to combine the estimated effects extracted from individual study. Results Thirteen studies, with a total of 5777 ovarian cancer cases and 142,189 participants, met the inclusion criteria. The pooled multivariable RRs of ovarian cancer for the highest vs. the lowest category of dietary fiber intake was 0.78 (95% CI: 0.70, 0.88) with no evidence of heterogeneity (I2 = 4.20%, P = 0.40). Our dose-response analysis also showed a significant inverse association between dietary fiber intake and ovarian cancer risk (an increment of 10 g/day; combined RR: 0.88; 95% CI: 0.82, 0.93). There was no evidence for a nonlinear association (P for nonlinearity = 0.83). Conclusions This meta-analysis suggests a significant inverse dose-response association between dietary fiber intake and ovarian cancer risk. Further studies with prospective design that take account of more potential confounders are warranted to confirm this association

    Optimizing the Maximum Recovery of Dihydromyricetin from Chinese Vine Tea, Ampelopsis grossedentata, Using Response Surface Methodology

    No full text
    This work provides an optimized extraction approach intended to maximize the recovery of dihydromyricetin (DHM) from Chinese vine tea (Ampelopsis grossedentata) leaves. The presented work adopts a Box-Behnken design as a response surface methodology to understand the role and influence of specific extraction parameters including: time, temperature, and solvent composition/ethanol (%) on DHM final yields. Initially, single factor experiments were used to delineate the role of above factors (temperature, time, and solvent composition) before proceeding with three factors-three levels Box-Behnken design with 17 separate runs to assess the effect of multifactorial treatments on DHM recovery rates. The collected data shows that independent variables (solvent composition, time, and temperature) can significantly affect DHM recovery rates with maximum yields resulting from a combined 60 °C, 60% aqueous ethanol, and 180 min treatment. From the empirical point of view, the above optimized extraction protocol can substantially enhance processing and profitability margins with a minimum need of interventions or associated costs

    Dose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies

    No full text
    The epidemiological evidence for a dose-response relationship between magnesium intake and risk of type 2 diabetes mellitus (T2D) is sparse. The aim of the study was to summarize the evidence for the association of dietary magnesium intake with risk of T2D and evaluate the dose-response relationship. We conducted a systematic review and meta-analysis of prospective cohort studies that reported dietary magnesium intake and risk of incident T2D. We identified relevant studies by searching major scientific literature databases and grey literature resources from their inception to February 2016. We included cohort studies that provided risk ratios, i.e., relative risks (RRs), odds ratios (ORs) or hazard ratios (HRs), for T2D. Linear dose-response relationships were assessed using random-effects meta-regression. Potential nonlinear associations were evaluated using restricted cubic splines. A total of 25 studies met the eligibility criteria. These studies comprised 637,922 individuals including 26,828 with a T2D diagnosis. Compared with the lowest magnesium consumption group in the population, the risk of T2D was reduced by 17% across all the studies; 19% in women and 16% in men. A statistically significant linear dose-response relationship was found between incremental magnesium intake and T2D risk. After adjusting for age and body mass index, the risk of T2D incidence was reduced by 8%–13% for per 100 mg/day increment in dietary magnesium intake. There was no evidence to support a nonlinear dose-response relationship between dietary magnesium intake and T2D risk. The combined data supports a role for magnesium in reducing risk of T2D, with a statistically significant linear dose-response pattern within the reference dose range of dietary intake among Asian and US populations. The evidence from Europe and black people is limited and more prospective studies are needed for the two subgroups

    Curdlan-Decorated Fullerenes Mitigate Immune-Mediated Hepatic Injury for Autoimmune Hepatitis Therapeutics via Reducing Macrophage Infiltration

    No full text
    Autoimmune hepatitis (AIH) is a severe immune-mediated inflammatory liver disease whose standard of care is immunosuppressive treatment with inevitable undesired outcomes. Macrophage is acknowledged to aggravate liver damage, providing a promising AIH therapeutic target. Accordingly, in this study, a kind of curdlan-decorated fullerene nanoparticle (Cur-F) is fabricated to alleviate immune-mediated hepatic injury for treating AIH via reducing macrophage infiltration in a concanavalin A (Con A)-induced AIH mouse model. After intravenous administration, Cur-F primarily distributes in liver tissues, efficiently eliminates the excessive reactive oxygen species, significantly attenuates oxidative stress, and subsequently suppresses the nuclear factor kappa-B-gene binding (NF-κB) signal pathway, resulting in the lowered production of pro-inflammatory cytokines and the balancing of the immune homeostasis with the prevention of macrophage infiltration in the liver. The regulation of hepatic inflammation contributes to inhibiting inflammatory cytokines-induced hepatocyte apoptosis, decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) contents and thus ameliorating immune-mediated hepatic injury. Notably, there is no detectable toxicity to the body. Our findings may open up novel avenues for AIH based on curdlan and fullerene materials

    Simulation of Queuing System of Globus Hypermarket

    Get PDF
    Import 05/08/2014Bakalářská práce se zabývá teorii hromadné obsluhy. Jejím cílem je na základě Markovských procesů a skutečných dat efektivně nasimulovat a popsat stav obsluhy v Hypermarketu Globus – Ostrava. První část práce je zaměřena na stručný popis teorie Markovských procesů, Teorie front a základnímu popisu simulačního programu. Dále pokračuje přehledem naměřených dat z hypermarketu a samotným postupem modelování.This thesis deals with queuing theory. Its objective is based on Markov processes and actual data efficiently simulate and describe the state of the operator in the hypermarket Globus - Ostrava. The first part focuses on a brief description of the theory of Markov processes, queuing theory and basic description of the simulation program. Followed by overview of the measured data from the hypermarket and the actual process modeling.Prezenční545 - Institut ekonomiky a systémů řízenívýborn

    Ruthenium-Alloyed Iron Phosphide Single Crystal with Increased Fermi Level for Efficient Hydrogen Evolution

    No full text
    Transition metal phosphide alloying is an effective approach for optimizing the electronic structure and improving the intrinsic performance of the hydrogen evolution reaction (HER). However, obtaining 3d transition metal phosphides alloyed with noble metals is still a challenge owing to their difference in electronegativity, and the influence of their electronic structure modulated by noble metals on the HER reaction also remains unclear. In this study, we successfully incorporated Ru into an Fe2P single crystal via the Bridgeman method and used it as a model catalyst, which effectively promoted HER. Hall transport measurements combined with first-principles calculations revealed that Ru acted as an electron dopant in the structure and increased the Fermi level, leading to a decreased water dissociation barrier and an improved electron-transfer Volmer step at low overpotentials. Additionally, the (21̅1) facet of Ru–Fe2P was found to be more active than its (001) facet, mainly due to the lower H desorption barrier at high overpotentials. The synergistic effect of Ru and Fe sites was also revealed to facilitate H* and OH* desorption compared with Fe2P. Therefore, this study elucidates the boosting effect of Ru-alloyed iron phosphides and offers new understanding about the relationship between their electronic structure and HER performance
    corecore