14 research outputs found

    Structural and functional study of the tissue specific alternative splicing factor MEC-8 from C.elegans

    No full text
    Chez les organismes multicellulaires la diversitĂ© protĂ©ique dans chaque cellule et chaque tissu est obtenue initialement en rĂ©gulant l’expression d’une partie des gĂšnes d’un gĂ©nome. Ces gĂšnes sĂ©lectionnĂ©s peuvent ensuite ĂȘtre soumis Ă  un Ă©pissage alternatif de sorte que certains exons sont retenus ou exclus dans l’ARNm final. Nous Ă©tudions les dĂ©tails molĂ©culaires de la protĂ©ine MEC-8, un facteur d’épissage tissu spĂ©cifique chez Caenorhabditis elegans. Les mutants MEC-8 sont responsables d’un phĂ©notype insensible au touchĂ© chez Caenorhabditis elegans. Plus prĂ©cisĂ©ment, MEC-8 lie le prĂ©-ARNm de mec-2 un composant des rĂ©cepteurs mĂ©canosensoriels afin de rĂ©guler la production d’un isoforme particulier nĂ©cessaire pour la transduction du signal mĂ©canosensoriel. Des Ă©tudes portant sur le motif conservĂ© de reconnaissance Ă  l’ARN (RRM) chez des orthologues des vertĂ©brĂ©s (RBPMS) et des insectes (couch potato, CPO) ont dĂ©montrĂ© la prĂ©sence d’un motif d’homodimĂ©risation dans le domaine RRM1 de MEC-8. Cependant MEC-8 contient aussi un second domaine RRM dans sa partie C-terminale, domaine qui n’est pas retrouvĂ© dans les protĂ©ines RBPMS et CPO. Nous avons donc exprimĂ© chaque domaine RRM de MEC-8 indĂ©pendamment ainsi que la protĂ©ine entiĂšre et ces constructions ont Ă©tĂ© utilisĂ©es pour diverses expĂ©riences biophysiques. Nous avons ainsi identifiĂ© la sĂ©quence de liaison optimale pour les deux domaines RRM1 et RRM2. Ces analyses ont aussi Ă©tĂ© menĂ©es sur les domaines homologues issus des protĂ©ines RBPMS et CPO qui prĂ©sentent une forte affinitĂ© pour la mĂȘme sĂ©quence d’ARN. Nous avons donc dĂ©couvert que malgrĂ© des diffĂ©rences de fonction et de localisation les membres de la famille RBPMS lient tous le mĂȘme motif d’ARN. Les dĂ©tails atomiques des deux RRM en complexe avec leur motif de liaison ont Ă©tĂ© obtenus en utilisant de la spectroscopie RMN et de la cristallographique des rayons X. Les deux complexes RRM-ligand de MEC-8 prĂ©sentent de surprenantes similaritĂ©s dans leur architecture.In multicellular organisms, proteomic diversity in each cell and tissue is provided initially by selective expression of gene subsets from the total genome, which are further subjected to alternative splicing, such that a different pattern of exons can be retained or excluded in the final protein coding mRNA. We are investigating the molecular details of the tissue-specific splicing factor protein MEC-8 from the worm Caenorhabditis elegans. The MEC-8 mutant protein is responsible for a touch insensitive phenotype in Caenorhabditis elegans, relating to its role as an alternative splicing factor. More precisely, MEC-8 can bind to the mec-2 pre-mRNA, a component of mechanosensory receptor, to regulate the production of a certain isoform required for transducing the touch signal. Previous studies of the conserved RNA Recognition Motif (RRM) domain in orthologues from vertebrate (RBPMS) and insect (couch potato; CPO) have demonstrated a homodimerization motif in MEC-8 RRM1. However, MEC-8 also contains a second RRM domain in the C-terminus that is not found in the characterized RBPMS and CPO proteins. We have therefore expressed the independent RNA-binding domains of MEC-8 as well as the full-length protein and have used these constructs in a variety of biophysical assays. We identified the optimal RNA binding sequence for both the RRM1 and RRM2, and quantified the penalty of sequence variations. The investigation has also been extended to the homologous domains from human RBPMS and Drosophila CPO, which show a high affinity to the same RNA sequence. We therefore find that despite differences in function and localization, the members of the RBPMS protein family all bind to the same RNA motif. Atomic details of binding have also been obtained by using a combination of NMR spectroscopy and X-ray crystallography. The ligand-bound complexes reveal a surprising similarity in the architecture of the bound ligand for the first and second RRM domains from MEC-8

    Etude structurale et fonctionnelle du facteur d'épissage alternatif tissu spécifique MEC-8 chez C.elegans

    Get PDF
    In multicellular organisms, proteomic diversity in each cell and tissue is provided initially by selective expression of gene subsets from the total genome, which are further subjected to alternative splicing, such that a different pattern of exons can be retained or excluded in the final protein coding mRNA. We are investigating the molecular details of the tissue-specific splicing factor protein MEC-8 from the worm Caenorhabditis elegans. The MEC-8 mutant protein is responsible for a touch insensitive phenotype in Caenorhabditis elegans, relating to its role as an alternative splicing factor. More precisely, MEC-8 can bind to the mec-2 pre-mRNA, a component of mechanosensory receptor, to regulate the production of a certain isoform required for transducing the touch signal. Previous studies of the conserved RNA Recognition Motif (RRM) domain in orthologues from vertebrate (RBPMS) and insect (couch potato; CPO) have demonstrated a homodimerization motif in MEC-8 RRM1. However, MEC-8 also contains a second RRM domain in the C-terminus that is not found in the characterized RBPMS and CPO proteins. We have therefore expressed the independent RNA-binding domains of MEC-8 as well as the full-length protein and have used these constructs in a variety of biophysical assays. We identified the optimal RNA binding sequence for both the RRM1 and RRM2, and quantified the penalty of sequence variations. The investigation has also been extended to the homologous domains from human RBPMS and Drosophila CPO, which show a high affinity to the same RNA sequence. We therefore find that despite differences in function and localization, the members of the RBPMS protein family all bind to the same RNA motif. Atomic details of binding have also been obtained by using a combination of NMR spectroscopy and X-ray crystallography. The ligand-bound complexes reveal a surprising similarity in the architecture of the bound ligand for the first and second RRM domains from MEC-8.Chez les organismes multicellulaires la diversitĂ© protĂ©ique dans chaque cellule et chaque tissu est obtenue initialement en rĂ©gulant l’expression d’une partie des gĂšnes d’un gĂ©nome. Ces gĂšnes sĂ©lectionnĂ©s peuvent ensuite ĂȘtre soumis Ă  un Ă©pissage alternatif de sorte que certains exons sont retenus ou exclus dans l’ARNm final. Nous Ă©tudions les dĂ©tails molĂ©culaires de la protĂ©ine MEC-8, un facteur d’épissage tissu spĂ©cifique chez Caenorhabditis elegans. Les mutants MEC-8 sont responsables d’un phĂ©notype insensible au touchĂ© chez Caenorhabditis elegans. Plus prĂ©cisĂ©ment, MEC-8 lie le prĂ©-ARNm de mec-2 un composant des rĂ©cepteurs mĂ©canosensoriels afin de rĂ©guler la production d’un isoforme particulier nĂ©cessaire pour la transduction du signal mĂ©canosensoriel. Des Ă©tudes portant sur le motif conservĂ© de reconnaissance Ă  l’ARN (RRM) chez des orthologues des vertĂ©brĂ©s (RBPMS) et des insectes (couch potato, CPO) ont dĂ©montrĂ© la prĂ©sence d’un motif d’homodimĂ©risation dans le domaine RRM1 de MEC-8. Cependant MEC-8 contient aussi un second domaine RRM dans sa partie C-terminale, domaine qui n’est pas retrouvĂ© dans les protĂ©ines RBPMS et CPO. Nous avons donc exprimĂ© chaque domaine RRM de MEC-8 indĂ©pendamment ainsi que la protĂ©ine entiĂšre et ces constructions ont Ă©tĂ© utilisĂ©es pour diverses expĂ©riences biophysiques. Nous avons ainsi identifiĂ© la sĂ©quence de liaison optimale pour les deux domaines RRM1 et RRM2. Ces analyses ont aussi Ă©tĂ© menĂ©es sur les domaines homologues issus des protĂ©ines RBPMS et CPO qui prĂ©sentent une forte affinitĂ© pour la mĂȘme sĂ©quence d’ARN. Nous avons donc dĂ©couvert que malgrĂ© des diffĂ©rences de fonction et de localisation les membres de la famille RBPMS lient tous le mĂȘme motif d’ARN. Les dĂ©tails atomiques des deux RRM en complexe avec leur motif de liaison ont Ă©tĂ© obtenus en utilisant de la spectroscopie RMN et de la cristallographique des rayons X. Les deux complexes RRM-ligand de MEC-8 prĂ©sentent de surprenantes similaritĂ©s dans leur architecture

    Cryo-EM structure of the RNA-rich plant mitochondrial ribosome

    No full text
    The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs; 1; . These organelles have a bacterial origin and were acquired during an early endosymbiosis event; 2; . Mitochondria possess specialized gene expression systems composed of various molecular machines, including the mitochondrial ribosomes (mitoribosomes). Mitoribosomes are in charge of translating the few essential mRNAs still encoded by mitochondrial genomes; 3; . While chloroplast ribosomes strongly resemble those of bacteria; 4,5; , mitoribosomes have diverged significantly during evolution and present strikingly different structures across eukaryotic species; 6-10; . In contrast to animals and trypanosomatids, plant mitoribosomes have unusually expanded ribosomal RNAs and have conserved the short 5S rRNA, which is usually missing in mitoribosomes; 11; . We have previously characterized the composition of the plant mitoribosome; 6; , revealing a dozen plant-specific proteins in addition to the common conserved mitoribosomal proteins. In spite of the tremendous recent advances in the field, plant mitoribosomes remained elusive to high-resolution structural investigations and the plant-specific ribosomal features of unknown structures. Here, we present a cryo-electron microscopy study of the plant 78S mitoribosome from cauliflower at near-atomic resolution. We show that most of the plant-specific ribosomal proteins are pentatricopeptide repeat proteins (PPRs) that deeply interact with the plant-specific rRNA expansion segments. These additional rRNA segments and proteins reshape the overall structure of the plant mitochondrial ribosome, and we discuss their involvement in the membrane association and mRNA recruitment prior to translation initiation. Finally, our structure unveils an rRNA-constructive phase of mitoribosome evolution across eukaryotes

    Specific features and assembly of the plant mitochondrial complex I revealed by cryo-EM

    Get PDF
    Electrons enter the mitochondrial respiratory chain via complex I. Here, the authors report high-resolution structures of mature plant complex I and one of its assembly intermediates, highlighting plant-specific features including an ancestral carbonic anhydrase domain

    Regulation of the macrolide resistance ABC-F translation factor MsrD

    No full text
    SUMMARY A ntibiotic r esistance ABC-Fs (ARE ABC-Fs) are translation factors currently proliferating among human pathogens that provide resistance against clinically important ribosome-targeting antibiotics. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure and also demonstrate that MsrD twin-ATPase sites work asymmetrically to mediate the dynamic of MsrD interaction with the ribosome. We show that cladinose-containing macrolides lead to insertion of MsrDL leader peptide into an undocumented conserved crevice of the ribosomal exit tunnel concomitantly with 23S rRNA rearrangements that prevent peptide bond formation and preclude accommodation of release factors. The stalled ribosome obstructs formation of a Rho-independent terminator which prevents msrD transcriptional attenuation. This stalled ribosome is rescued by MsrD, but not by MsrD mutants which do not provide antibiotic resistance, showing evidence of equivalence between MsrD function in antibiotic resistance and its action on this complex

    How to build a ribosome from RNA fragments in Chlamydomonas mitochondria

    Get PDF
    Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components. Single particle cryo-electron microscopy resolves how the Chlamydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-contiguous gene pieces. Additional proteins, mainly OPR, PPR and mTERF helical repeat proteins, are found in Chlamydomonas mitoribosome, revealing the structure of an OPR protein in complex with its RNA binding partner. Targeted amiRNA silencing indicates that these ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-electron tomography to show that Chlamydomonas mitoribosomes are attached to the inner mitochondrial membrane via two contact points mediated by Chlamydomonas-specific proteins. Our study expands our understanding of mitoribosome diversity and the various strategies these specialized molecular machines adopt for membrane tethering

    Structural Differences in Translation Initiation between Pathogenic Trypanosomatids and Their Mammalian Hosts

    No full text
    International audienceLa traduction canonique de l’ARNm chez les eucaryotes commence par la formation du complexe de prĂ©-initiation (PIC) 43S. Son assemblage nĂ©cessite la liaison de l’initiateur Met-TRNAjeRencontrĂšrent et plusieurs facteurs d’initiation eucaryotes (eIF) Ă  la petite sous-unitĂ© ribosomique (40S). Par rapport Ă  leurs hĂŽtes mammifĂšres, les trypanosomatidĂ©s prĂ©sentent des diffĂ©rences structurelles significatives dans leurs 40S, suggĂ©rant une variabilitĂ© substantielle dans l’initiation de la traduction. Ici, nous dĂ©terminons la structure du PIC 43S de Trypanosoma cruzi, le parasite responsable de la maladie de Chagas. Notre structure prĂ©sente de nombreuses caractĂ©ristiques spĂ©cifiques, telles que la variante eIF3 et ses interactions uniques avec les grands segments d’expansion de l’ARNr (ES) 9S, 7S, et 6S, et l’association d’une hĂ©licase de type DDX60 spĂ©cifique au kinĂ©toplaste. Il rĂ©vĂšle Ă©galement le site de liaison 40S du domaine eIF5 C-terminal et les structures des queues terminales clĂ©s de plusieurs eIF conservĂ©s sous-jacentes Ă  leurs activitĂ©s au sein du PIC. Nos rĂ©sultats sont corroborĂ©s par des essais de traction de glutathion S-transfĂ©rase (GST) dans les donnĂ©es humaines et T. cruzi et la spectromĂ©trie de masse

    How to build a ribosome from RNA fragments in Chlamydomonas mitochondria

    Get PDF
    International audienceMitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components. Single particle cryo-electron microscopy resolves how the Chlamydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-contiguous gene pieces. Additional proteins, mainly OPR, PPR and mTERF helical repeat proteins, are found in Chlamydomonas mitoribosome, revealing the structure of an OPR protein in complex with its RNA binding partner. Targeted amiRNA silencing indicates that these ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-electron tomography to show that Chlamydomonas mitoribosomes are attached to the inner mitochondrial membrane via two contact points mediated by Chlamydomonas-specific proteins. Our study expands our understanding of mitoribosome diversity and the various strategies these specialized molecular machines adopt for membrane tethering
    corecore