11 research outputs found
Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor
Thermophilic microorganisms hold a great potential for bioethanol production on waste biomass, due to their ability to utilize pentoses and hexoses alike. However, to date hardly any data on thermophiles growing directly on industrial substrates like spent sulfite liquor (SSL) are available. This contribution investigates the ability of Thermoanaerobacter species to utilize the main sugars in the used SSL (mannose, glucose and xylose) and the effect of process parameters (pH, temperature and sugar concentration) on their growth. Based on these results the strain T. mathranii was chosen for further studies. The ability of T. mathranii to grow directly on SSL was investigated and the effect of several inhibiting substances on growth was elucidated. Furthermore it was tested whether pretreatment with activated charcoal can increase the fermentability of SSL. The fermentations were evaluated based on yields and specific rates. It could be shown that T. mathranii was able to ferment all sugars in the investigated softwood SSL and fermented diluted, untreated SSL (up to 2.7% (w/w) dry matter). Pretreatment with activated charcoal could slightly reduce the amount of phenols in the substrate and thus facilitate growth and ethanol production on higher SSL concentrations (up to 4.7% (w/v) dry matter). Ethanol yields of 0.29-0.44 Cmmol of ethanol per Cmmol sugar were obtained on untreated and pretreated spent sulfite liquor, respectively. These results on an industrial substrate strengthen the claim that thermophilic microorganisms might be the optimal candidates for forest biorefinery
Iminium Salts by Meerwein Alkylation of Ehrlich’s Aldehyde
4-(Dimethylamino)benzaldehyde is alkylated at the N atom by dialkyl sulfates, MeI, or Me3O BF4. In contrast, ethylation by Et3O BF4 occurs selectively at the O atom yielding a quinoid iminium ion. 4-(Diethylamino)benzaldehyde is alkylated only at O by either Et or Me oxonium reagent. The iminium salts are prone to hydrolysis giving the corresponding hydrotetrafluoroborates. Five crystal structures were determined
CHARACTERIZATION OF STRUCTURAL CHANGES IN LIGNIN DURING CONTINUOUS BATCH KRAFT COOKING OF EUCALYPTUS GLOBULUS
Eucalyptus globulus wood originating from plantations in Uruguay was subjected to continuous batch kraft cooking (CBC), applying mill-like conditions. Pulp samples were taken at different stages of CBC cooking being representative for all three cooking phases. The residual lignin was successfully isolated in a reasonable yield by a new method, the dissolved wood lignin (DWL) protocol, which is based on the total dissolution of ball milled wood and pulp samples in dimethylsulfoxide and N-methylimidazole (DMSO/NMI) followed by precipitation in dioxane/ water to separate lignin and carbohydrate fractions. For comparative reasons, the lignin was also isolated by a conventional mild acidolysis (AL) method. Extensive structural lignin characterization using 1D and 2D NMR revealed that the DWL protocol allows the isolation of less altered lignin than the AL method. During bulk and residual delignification, the S/G ratio of lignin remaining in the fibers continuously decreased, while the content of -O-4 units and phenolic OH groups remained almost unaffected, suggesting that the CBC process permits enhanced delignification efficiency and good bleachability
Generation of PHB from spent sulfite liquor using halophilic microorganisms
Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB
Oxidation of Various Kraft Lignins with a Bacterial Laccase Enzyme
Modification of kraft lignin (KL), traditionally uses harsh and energy-demanding physical and chemical processes. In this study, the potential of the bacterial laccase CotA (spore coating protein A) for oxidation of KL under mild conditions was assessed. Thereby, the efficiency of CotA to oxidize both softwood and hardwood KL of varying purity at alkaline conditions was examined. For the respective type of wood, the highest oxidation activity by CotA was determined for the medium ash content softwood KL (MA_S) and the medium ash content hardwood KL (MA_H), respectively. By an up to 95% decrease in fluorescence and up to 65% in phenol content coupling of the structural lignin units was indicated. These results correlated with an increase in viscosity and molecular weight, which increased nearly 2 and 20-fold for MA_H and about 1.3 and 6.0-fold for MA_S, respectively. Thus, this study confirms that the CotA laccase can oxidize a variety of KL at alkaline conditions, while the origin and purity of KL were found to have a major impact on the efficiency of oxidation. Under the herein tested conditions, it was observed that the MA_H KL showed the highest susceptibility to CotA oxidation when compared to the other hardwood KLs and the softwood KLs. Therefore, this could be a viable method to produce sustainable resins and adhesives
Dialkyl Phosphate-Related Ionic Liquids as Selective Solvents for Xylan
Herein we describe a possibility of selective dissolution
of xylan,
the most important type of hemicellulose, from <i>Eucalyptus
globulus</i> kraft pulp using ionic liquids (ILs). On the basis
of the IL 1-butyl-3-methylimidazolium dimethyl phosphate, which is
well-known to dissolve pulp, the phosphate anion was modified by substituting
one oxygen atom for sulfur and selenium, respectively. This alteration
reduces the hydrogen bond basicity of the IL and therefore prevents
dissolution of cellulose fibers, whereas the less ordered xylan is
still dissolved. <sup>1</sup>H NMR spectra of model solutions and
Kamlet–Taft parameters were used to quantify the solvent polarity
and hydrogen bond acceptor properties of the ILs. These parameters
have been correlated to their ability to dissolve xylan and cellulose,
which was monitored by <sup>13</sup>C NMR spectroscopy. It was found
that the selectivity for xylan dissolution increases to a certain
extent with decreasing hydrogen-bond-accepting ability of anions of
the ILs
A biobased, bioactive, low CO\u2082 impact coating for soil improvers
Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 °C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 × 10−3 Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg−1 product, making it a viable alternative to fossil-based coatings.This work was supported by the NÖ Forschungs- und Bildungsges.m.b.H. [grant number SC17-007].
The SUFERT project has received funding from the Bio-based Industries Joint Undertaking (BBI-JU) under grant agreement No. 792021.
The BBI-JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio-Based Industries Consortium