2,329 research outputs found

    The evolution of the bi-modal colour distribution of galaxies in SDSS groups

    Full text link
    We analyse u−ru-r colour distributions for several samples of galaxies in groups drawn from the Fourth Data Release of the Sloan Digital Sky Survey. For all luminosity ranges and environments considered the colour distributions are well described by the sum of two Gaussian functions. We find that the fraction of galaxies in the red sequence is an increasing function of group virial mass. We also study the evolution of the galaxy colour distributions at low redshift, z≀0.18z\le0.18 in the field and in groups for galaxies brighter than Mr−5log⁥(h)=−20M_r-5\log(h)=-20, finding significant evidence of recent evolution in the population of galaxies in groups. The fraction of red galaxies monotonically increases with decreasing redshift, this effect implies a much stronger evolution of galaxies in groups than in the field.Comment: 7 pages, 6 figures, submited to MNRAS after minor revisio

    Cu/Ag EAM Potential Optimized for Heteroepitaxial Diffusion from ab initio Data

    Full text link
    A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(111) by fitting to ab initio data. The fitting database consists of DFT calculations of Cu monomers and dimers on Ag(111), specifically their relative energies, adatom heights, and dimer separations. We start from the Mishin Cu-Ag EAM potential and first modify the Cu-Ag pair potential to match the FCC/HCP site energy difference then include Cu-Cu pair potential optimization for the entire database. The optimized EAM potential reproduce DFT monomer and dimer relative energies and geometries correctly. In trimer calculations, the potential produces the DFT relative energy between FCC and HCP trimers, though a different ground state is predicted. We use the optimized potential to calculate diffusion barriers for Cu monomers, dimers, and trimers. The predicted monomer barrier is the same as DFT, while experimental barriers for monomers and dimers are both lower than predicted here. We attribute the difference with experiment to the overestimation of surface adsorption energies by DFT and a simple correction is presented. Our results show that the optimized Cu-Ag EAM can be applied in the study of larger Cu islands on Ag(111).Comment: 15 pages, 7 figure

    Assessing molecular outflows and turbulence in the protostellar cluster Serpens South

    Full text link
    Molecular outflows driven by protostellar cluster members likely impact their surroundings and contribute to turbulence, affecting subsequent star formation. The very young Serpens South cluster consists of a particularly high density and fraction of protostars, yielding a relevant case study for protostellar outflows and their impact on the cluster environment. We combined CO J=1−0J=1-0 observations of this region using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Institut de Radioastronomie Millim\'{e}trique (IRAM) 30 m single dish telescope. The combined map allows us to probe CO outflows within the central, most active region at size scales of 0.01 pc to 0.8 pc. We account for effects of line opacity and excitation temperature variations by incorporating 12^{12}CO and 13^{13}CO data for the J=1−0J=1-0 and J=3−2J=3-2 transitions (using Atacama Pathfinder Experiment and Caltech Submillimeter Observatory observations for the higher CO transitions), and we calculate mass, momentum, and energy of the molecular outflows in this region. The outflow mass loss rate, force, and luminosity, compared with diagnostics of turbulence and gravity, suggest that outflows drive a sufficient amount of energy to sustain turbulence, but not enough energy to substantially counter the gravitational potential energy and disrupt the clump. Further, we compare Serpens South with the slightly more evolved cluster NGC 1333, and we propose an empirical scenario for outflow-cluster interaction at different evolutionary stages.Comment: 26 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Geometric quantization of mechanical systems with time-dependent parameters

    Get PDF
    Quantum systems with adiabatic classical parameters are widely studied, e.g., in the modern holonomic quantum computation. We here provide complete geometric quantization of a Hamiltonian system with time-dependent parameters, without the adiabatic assumption. A Hamiltonian of such a system is affine in the temporal derivative of parameter functions. This leads to the geometric Berry factor phenomena.Comment: 20 page

    Dynamics of two coupled chaotic systems driven by external signals

    Get PDF
    Setting-up a controlled or synchronized state in a space-time chaotic structure targeting an unstable periodic orbit is a key feature of many problems in high dimensional physical, electronics, biological and ecological systems (among others). Formerly, we have shown numerically and experimentally that phase synchronization [M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)] can be achieved in time dependent hydrodynamic flows [D. Maza, A. Vallone, H.L. Mancini, S. Boccaletti, Phys. Rev. Lett. 85, 5567 (2000)]. In that case the flow was generated in a small container with inhomogeneous heating in order to have a single roll structure produced by a BÂŽenard-Marangoni instability [E.L. Koshmieder, BÂŽenard Cells and Taylor Vortices (Cambridge University Press, 1993)]. Phase synchronization was achieved by a small amplitude signal injected at a subharmonic frequency obtained from the measured Fourier temperature spectrum. In this work, we analyze numerically the effects of driving two previously synchronized chaotic oscillators by an external signal. The numerical system represents a convective experiment in a small container with square symmetry, where boundary layer instabilities are coupled by a common flow. This work is an attempt to control this situation and overcome some difficulties to select useful frequency values for the driving force, analyzing the influence of different harmonic injection signals on the synchronization in a system composed by two identical chaotic Takens-Bogdanov equations (TBA and TBB) bidirectionally coupled

    Complexity control in a synchronized complex system

    Get PDF
    We numerically analyze the problem of how to drive a synchronized state in a complex system to other state with diferent complexity, keeping synchronization. The complex system used is obtained by synchronizing two identical chaotic Takens-Bogdanov sub-systems specially coupled to recover in the global system the symmetries of each oscillator. The global state is adjusted to have an initial synchronized hyperchaotic state (with two positive Lyapunov exponents). This work is an attempt, using small amplitude external signals, to drive the global system to other complex state keeping the synchronized state. The method used to overcome the problems that we had to select a useful frequency value for the driving signal will be discussed, together with a possible experiment in a thermo-convective flow for validating the results obtained

    Method of Metallurgically Bonding Articles and Article Therefor

    Get PDF
    An article suitable for laser-welded metallurgical bonding, the article having a first part having a lower surface, and a second part having an upper surface is disclosed. The lower surface of the first part is disposed at the upper surface of the second part to provide for a faying surface thereat. The faying surface has a plurality of channels with a depth equal to or greater than about 1 micron and equal to or less than about 1000 microns. The article is suitable for laser-welded metallurgical bonding at the faying surface. The plurality of channels has a repetitive pattern of channels arranged along a path of the faying surface in a direction of the metallurgical bonding action

    Method of Metallurgically Bonding Articles and Article Therefor

    Get PDF
    An article suitable for arc-welded metallurgical bonding having a first part having a lower surface, and a second part having an upper surface is disclosed. The lower surface of the first part is disposed at the upper surface of the second part to provide for a faying surface thereat. The faying surface has a plurality of channels with a depth equal to or greater than about 1 micron and equal to or less than about 1000 microns. The article is suitable for arc-welded metallurgical bonding at the faying surface. The plurality of channels has a repetitive pattern of channels arranged along a path of the faying surface in a direction of the metallurgical bonding action
    • 

    corecore