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Complexity control in a synchronized complex system
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Abstract. We numerically analyze the problem of how to drive a synchronized
state in a complex system to other state with different complexity, keeping syn-
chronization. The complex system used is obtained by synchronizing two identical
chaotic Takens-Bogdanov sub-systems specially coupled to recover in the global
system the symmetries of each oscillator. The global state is adjusted to have an
initial synchronized hyperchaotic state (with two positive Lyapunov exponents).
This work is an attempt, using small amplitude external signals, to drive the global
system to other complex state keeping the synchronized state. The method used
to overcome the problems that we had to select a useful frequency value for the
driving signal will be discussed, together with a possible experiment in a thermo-
convective flow for validating the results obtained.
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1. Introduction

Reduction in complexity of synchronized coupled systems has been frequently
observed in numerical experiments controlling the coupling since the first
works on confined systems [1] to large populations discussed in the frame
of complex networks [2]. When a low dimensional system (3D) is analized,
synchronization frequently supress chaos. In systems with higher dimensional
dynamics, more recent works coupling hyperchaotic ODE have been reported
to obtain synchronized states between identical systems without chaos sup-
pression [4].

This work is focused on the driving with small amplitude signals two syn-
chronized hyperchaotic systems, without destroy the synchronization between
them. We use two Takens Bogdanov systems (with symmetry D4) coupled
adequately to recover for the ensamble the symmetry of each equation sys-
tem. Recently has been shown that a small amplitude harmonic [5] can be
used to change the dynamical state in this system, if the frequency of the
driving signal is properly chose. The first problem is that this frequency can
not be obtained from the Fourier spectrum. In the cited work, a histogram
constructed ad-hoc by observing the recurrent times in the output signal was
used as a reference. As we remark forward, the histogram is not the result of
the return times from a Poincare section, but it is simply a display of the more
frequently visited times. The new state has been verified by obtaining the new
Fourier spectrum and the attractor in the phase space. As the system has a
Riddley bassin, a control of the output against a small change in the initial
conditions was necessary to verify the independence of the global dynamics
from initial conditions.

Finnally, we present among the new results, the autocorrelation in the
output signal both for the “free-running” (without injection signal) and the
controlled state. The larger autocorrelation time that can be observed in the
controlled state, is a good indicator that, even if the system remains chaotic,
becomes more coherent.

2. The dynamical system

Two identical oscillators TB1 and TB2 have been coupled to obtain the chaotic
synchronized dynamical system that we will drive. Each one of them is a four
dimensional Takens-Bogdanov’s system as it is shown in Eq. (1).
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Figure 1: Interconnection scheme. The harmonic signal fE is always injected
to the variable x of the oscillator A

ẋ = y (1)
ẏ = µx + x(a(x2 + z2) + bz2)
ż = w (2)
ẇ = µz + z(a(x2 + z2) + bx2)

The symmetry properties of the dynamical equations are described by the
symmetry group D4 composed by reflection τ and rotation ρ (Eq. (3)):

τ : (x, y, z, w) → (z, w, x, y) (3)
ρ : (x, y, z, w) → (−x,−y, z, w)

These symmetries play an important role in the way that we have to
connect A and B, as it is shown in Fig. 1.

Symmetrical coupling of two identical Takens-Bogdanov through one vari-
able x has been presented in reference [4]. Synchronization regime has been
analized using different coupling schemes (symmetric or asymmetric) and con-
sidering the coupling as a direct function of the error between both systems
(acting as a feedback loop). Phase synchronization (PS) has been obtained
using selected values for the parameters that must be fine-tuned to fit the
Lyapunov exponent windows [6]. The synchronized regimes obtained in this
case are not very stable and depend strongly on the coupling coefficient value.

Here we present a different approach. To obtain a robust synchronization
manifold we recover for the coupled system the symmetry of each one oscil-
lator. This is achieved by coupling the feedback on two different variables
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(x and z). Internal symmetry of the equations couples variables by pairs (x
and y to z and w). Introducing the coupling bidirectionally between A and B
through x and z, we are constructing a closed “ring structure” that provides
the robustness and Complete Synchronization (CS) is obtained. This was im-
possible to obtain in the case of a symmetrical coupling scheme based on only
one variable [3]. The equations for the coupled system are now transformed in
Eq. (4), where variables are named by the subscripts (A, B) corresponding to
each original system. The coupled system is also hyperchaotic (having more
than one positive Lyapunov exponent) and chaos is not completely suppressed
by synchronization.

ẋA = yA + εx(xB − xA) + 0.01xMAX sin(2πfEt)
ẏA = µxA + xA(a(x2

A + z2
A) + bz2

A)
żA = wA

ẇA = µzA + zA(a(x2
A + z2

A) + bx2
A)

ẋB = yB (4)
ẏB = µxB + xB(a(x2

B + z2
B) + bz2

B)
żB = wB + εz(zA − zB)
ẇB = µzB + zB(a(x2

B + z2
B) + bx2

B)

The coupling terms εx(xB − xA) and εz(zA − zB) can be interpreted as
the feedback signals between both systems. These factors are equal to zero
when complete synchronization is achieved and both systems reproduce the
same trajectory on the synchronous manifold separately whitout any feedback
between them. This kind of coupling extends the inner symmetries of each
equation [4]. system to the coupled one which has a higher dimension. The
results can be seen in Fig. 2.

Variables (x, y, z, w) in A are completely synchronized to (x, y, z, w) in
B. This mean that xA is complete synchronized to xB and so on. Temporal
signals displaying the synchronized state will be shown in the next paragraph
together with effects of a driving signal fE = 0.01xMAX sin(2πfEt).

Fig. 2 (a) displays the Fourier spectrum for one variable (variable xA) and
a low frequencies detail appears in Fig. 2 (b). This figure shows a characteristic
spectrum of a chaotic signal. Synchronization can be appreciated in Fig. 2
(c), where the synchronization error function against time goes to zero after a
short transient.
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Figure 2: Figure (a) Fourier spectrum for variable x1. (b) Zoom on low
frequencies. (c) Error function for synchronization in logarithmic scale. The
function going to zero against time illustrate the necessary condition for CS.
(d) Histogram of recurrent times (in seconds) that allow us to obtain the
system characteristic times.

3. Driving the coupled system

This information, (that can be easily obtained from an experiment), is not
sufficient if we need to choose a frequency for driving the system. As in
many other cases (like in the Rössler attractor for the “Fünnel” parameters),
here also is not possible to construct a Poincaré section, and under these
restrictions we cannot define an ”analytical phase” [1]. To overcome this
problem we constructed an histogram considering the period between two
neighbours maximum (or minimum [5]), obtained from a very long data file
of the output signal. The amplitud in the histogram represents at each time
value, the frequency (number of times) that this period value appears in the
output signal, being the highest peak the period that most frequently appears.
Resolution in time can be controled by choosing the width of the time interval
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to count, and in amplitud, it is one count over the total number of counts. A
typical histogram constructed from the output signal of the coupled system is
shown in Fig. 2 (d). From this histogram, with periods distributed around
two main peaks, we can obtain the most recurrent values of the frequencies in
the system.

4. Results and Conclusions

The histogram has been used to localize the region of frequencies that should
be applied. To determine which of the frecuencies in the interval is the best
to act on the system, we reconstruct histograms injecting signals with several
frecuencies between the two peaks. Clearly the central frequency gives a state
with a different dynamic (figure 3). To check it accurately we obtained the
new Forier spectrum, the new phase diagram and the autocorrelation for the
variable x. The results for autocorrelation are presented in figure 4. The
driven state display a longer correlation (zero crossing) for the drived system.
It is a clear indication that we obtained a more ordered system with a lower
complexity and a higher coherence.
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Figure 3: Sequence of histograms for the system driven with a harmonic signal
with different frequencies fE injected to the variable x of the oscillator A
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Figure 4: Comparison of autocorrelation in the variable x obtained from the
free running (red) and the driven state (blue)
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